论文标题
$π_2$ - 明显规则的可接受性:插值,模型完成和联系代数
Admissibility of $Π_2$-Inference Rules: interpolation, model completion, and contact algebras
论文作者
论文摘要
我们制定了三种策略来通过插值,统一的插值和模型完成来认识到非标准推理规则的可采性。我们将机械应用于对称含义的计算$ \ mathsf {s^2ic} $的情况下,我们还通过触点代数的等效理论提供了其代数对应物模型完成的有限公理化。使用此结果,我们获得了可允许的$π_2$ rules的有限基础。
We devise three strategies for recognizing admissibility of non-standard inference rules via interpolation, uniform interpolation, and model completions. We apply our machinery to the case of symmetric implication calculus $\mathsf{S^2IC}$, where we also supply a finite axiomatization of the model completion of its algebraic counterpart, via the equivalent theory of contact algebras. Using this result we obtain a finite basis for admissible $Π_2$-rules.