论文标题

社交网络作为集体智能:对Python生态系统的检查

Social Networks as a Collective Intelligence: An Examination of the Python Ecosystem

论文作者

Pike, Thomas, Colter, Robert, Bailey, Mark, Kazil, Jackie, Meyers, John Speed

论文摘要

Python生态系统代表了一个全球,富含技术,支持技术的网络。通过分析Python的依赖性网络,其前14个最进口的库和Cpython(或Core Python)库,这项研究发现了明确的证据,可以将Python网络视为解决问题的网络。对前14个图书馆和CPYTHON的贡献者网络的分析揭示了新兴的专业化,其中特定图书馆的专家是隔离和专注的,而其他专家则将这些关键图书馆联系在一起,从而优化了本地和全球信息交换效率。随着这些网络的扩展,局部效率下降,而密度增加,代表了剥削(优化工作解决方案)和勘探(查找新解决方案)之间可能的过渡点。这些结果提供了对支持技术的社交网络最佳功能的见解,并可能对现代组织的有效运作具有更大的影响。

The Python ecosystem represents a global, data rich, technology-enabled network. By analyzing Python's dependency network, its top 14 most imported libraries and cPython (or core Python) libraries, this research finds clear evidence the Python network can be considered a problem solving network. Analysis of the contributor network of the top 14 libraries and cPython reveals emergent specialization, where experts of specific libraries are isolated and focused while other experts link these critical libraries together, optimizing both local and global information exchange efficiency. As these networks are expanded, the local efficiency drops while the density increases, representing a possible transition point between exploitation (optimizing working solutions) and exploration (finding new solutions). These results provide insight into the optimal functioning of technology-enabled social networks and may have larger implications for the effective functioning of modern organizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源