论文标题
用于计算雾计算中计算卸载的基于能源优先级的任务计划
Energy Efficient Priority-Based Task Scheduling for Computation Offloading in Fog Computing
论文作者
论文摘要
FOG计算为无线网络边缘的物联网(IoT)服务的计算卸载提供了灵活的解决方案。它是对传统云计算的补充,对于大多数涉及小型计算任务级别的物联网应用程序中的大多数卸载任务而言,这不是成本效益。考虑到雾计算中任务和资源的异质性,至关重要的是将每个任务卸载到适当的目的地,以充分利用这项有前途的技术的潜在好处。在本文中,我们提出了一个可扩展的基于优先级的索引策略,称为优先级的增量率(PIER),以优化网络的能源效率。我们证明,在适用于大量均质卸载任务和指数分布的任务时间的特殊情况下,码头在适用于当地的特殊情况下是最佳的。在统计上不同的卸载任务上的更一般情况下,我们进一步证明了码头对基准策略的改善,从能效和通过广泛的模拟对码头对不同任务持续时间分布的鲁棒性的鲁棒性。我们的结果表明,在所有模拟运行中,码头可以比基准策略更好。
Fog computing offers a flexible solution for computational offloading for Internet of Things (IoT) services at the edge of wireless networks. It serves as a complement to traditional cloud computing, which is not cost-efficient for most offloaded tasks in IoT applications involving small-to-medium levels of computing tasks. Given the heterogeneity of tasks and resources in fog computing, it is vital to offload each task to an appropriate destination to fully utilize the potential benefit of this promising technology. In this paper, we propose a scalable priority-based index policy, referred to as the Prioritized Incremental Energy Rate (PIER), to optimize the energy efficiency of the network. We demonstrate that PIER is asymptotically optimal in a special case applicable for local areas with high volumes of homogeneous offloaded tasks and exponentially distributed task durations. In more general cases with statistically different offloaded tasks, we further demonstrate the improvement of PIER over benchmark policies in terms of energy efficiency and the robustness of PIER to different task duration distributions by extensive simulations. Our results show that PIER can perform better than benchmark policies in more than 78.6% of all simulation runs.