论文标题
平滑完整交叉口模量的交集理论
Intersection theory on moduli of smooth complete intersections
论文作者
论文摘要
我们提供了一种计算平滑完整交叉点模量有理盘环的通用方法。我们以不同的方式专注于此结果:计算关联堆栈的积分PICARD组;为了获得对二拟合的平滑完整交集的模量的理性杂志的明确表示;为了证明属于$ \ leq 5 $的平滑曲线的模量和新的结果,以及$ \ leq 8 $的两极分化的K3表面。
We provide a general method for computing rational Chow rings of moduli of smooth complete intersections. We specialize this result in different ways: to compute the integral Picard group of the associated stack ; to obtain an explicit presentation of rational Chow rings of moduli of smooth complete intersections of codimension two; to prove old and new results on moduli of smooth curves of genus $\leq 5$ and polarized K3 surfaces of degree $\leq 8$.