论文标题
关于使用Hele-Shaw细胞中电场的粘性指法的数值研究
Numerical study on viscous fingering using electric fields in a Hele-Shaw cell
论文作者
论文摘要
我们研究了面向内施加的电场,研究了Hele-Shaw细胞中移动界面的非线性动力学。我们开发了一种精确的边界积分方法,其中制定了耦合的积分方程系统。尽管可以去除高阶空间导数引起的刚度,但长期模拟仍然很昂贵,因为界面的不断发展的速度随着界面扩展而急剧下降。我们通过采用重新制定方案来消除这种物理施加的刚度,从而加速了缓慢的动态并降低了计算成本。我们的非线性结果表明,正电流阻止手指的分支并促进模式的总体稳定。另一方面,负电流使界面更加不稳定,并导致连接手指和一个小内部区域的薄尾巴结构的形成。当不注入通量并利用负电流时,该界面倾向于接近原点并分解为几滴。我们研究了界面和原点之间最小距离的时间演变,发现它遵守代数定律$ \ displayStyle(t _* - t)^b $,其中$ t _*$是估计的捏合时间。
We investigate the nonlinear dynamics of a moving interface in a Hele-Shaw cell subject to an in-plane applied electric field. We develop a spectrally accurate boundary integral method where a coupled integral equation system is formulated. Although the stiffness due to the high order spatial derivatives can be removed, the long-time simulation is still expensive since the evolving velocity of the interface drops dramatically as the interface expands. We remove this physically imposed stiffness by employing a rescaling scheme, which accelerates the slow dynamics and reduces the computational cost. Our nonlinear results reveal that positive currents restrain finger ramification and promote overall stabilization of patterns. On the other hand, negative currents make the interface more unstable and lead to the formation of thin tail structures connecting the fingers and a small inner region. When no flux is injected, and a negative current is utilized, the interface tends to approach the origin and break up into several drops. We investigate the temporal evolution of the smallest distance between the interface and the origin and find that it obeys an algebraic law $\displaystyle (t_*-t)^b$, where $t_*$ is the estimated pinch-off time.