论文标题

Stolenencoder:在自我监督学习中窃取预先训练的编码器

StolenEncoder: Stealing Pre-trained Encoders in Self-supervised Learning

论文作者

Liu, Yupei, Jia, Jinyuan, Liu, Hongbin, Gong, Neil Zhenqiang

论文摘要

预训练的编码器是通用特征提取器,可用于许多下游任务。自我监督学习的最新进展可以使用大量未标记的数据预先培训高效编码器,从而导致新兴编码器作为服务(EAAS)。预先训练的编码器可能被视为机密,因为其培训需要大量数据和计算资源以及公共发布可能会促进滥用AI,例如,以促进Deepfakes的产生。在本文中,我们提出了第一次称为Stolenencoder的攻击,以窃取预训练的图像编码器。我们评估了由我们自己预先训练的多个目标编码器和三个现实世界中编码器的stolenencoder,包括由Google预先培训的Imagenet编码器,由OpenAI预先培训的剪辑编码器以及Clarifai的一般嵌入式编码器部署为付费EAAS。我们的结果表明,我们被盗的编码器与目标编码器具有相似的功能。特别是,构建在目标编码器和被盗的下游分类器具有相似的精度。此外,使用StolenenCoder窃取目标编码器所需的数据和计算资源要比从头开始进行预训练要少得多。我们还探索了三个防御能力,这些防御能力扰动目标编码器产生的矢量。我们的结果表明,这些防御措施不足以减轻Stolenencoder。

Pre-trained encoders are general-purpose feature extractors that can be used for many downstream tasks. Recent progress in self-supervised learning can pre-train highly effective encoders using a large volume of unlabeled data, leading to the emerging encoder as a service (EaaS). A pre-trained encoder may be deemed confidential because its training requires lots of data and computation resources as well as its public release may facilitate misuse of AI, e.g., for deepfakes generation. In this paper, we propose the first attack called StolenEncoder to steal pre-trained image encoders. We evaluate StolenEncoder on multiple target encoders pre-trained by ourselves and three real-world target encoders including the ImageNet encoder pre-trained by Google, CLIP encoder pre-trained by OpenAI, and Clarifai's General Embedding encoder deployed as a paid EaaS. Our results show that our stolen encoders have similar functionality with the target encoders. In particular, the downstream classifiers built upon a target encoder and a stolen one have similar accuracy. Moreover, stealing a target encoder using StolenEncoder requires much less data and computation resources than pre-training it from scratch. We also explore three defenses that perturb feature vectors produced by a target encoder. Our results show these defenses are not enough to mitigate StolenEncoder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源