论文标题
一种适合系统托架分离的Smolyak算法:应用于具有较大振幅运动的封装分子
A Smolyak algorithm adapted to a system-bath separation: application to an encapsulated molecule with large amplitude motions
论文作者
论文摘要
为严格的量子模拟提出了一种适合系统浴的Smolyak算法。该技术将稀疏的网格方法与系统浴概念结合在特定的配置中,而无需限制哈密顿量的形式,从而实现了“系统”部分的激发过渡的高效收敛。我们的方法提供了一种一般的方法来克服标准Smolyak算法的多年生收敛问题,并可以模拟具有超过一百度自由度的软盘分子。当前方法的效率在h $ _2 $ _2 $ cAged以Sii clathrate水合(包括两种笼子)在内的H $ _2的模拟中进行了说明。通过增加正常水分子模式的数量来融合过渡能。我们的结果证实了h $ _2 $分子的转换和旋转($ j = 1 $)的三联分裂。此外,它们显示出相对于刚性笼中的转换的略有增加。
A Smolyak algorithm adapted to system-bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system-bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence of the excitation transitions for the "system" part. Our approach provides a general way to overcome the perennial convergence problem for the standard Smolyak algorithm and enables the simulation of floppy molecules with more than a hundred degrees of freedom.The efficiency of the present method is illustrated on the simulation of H$_2$ caged in an sII clathrate hydrate including two kinds of cage modes. The transition energies are converged by increasing the number of normal modes of water molecules. Our results confirm the triplet splittings of both translational and rotational ($j=1$) transitions of the H$_2$ molecule. Furthermore, they show a slight increase of the translational transitions with respect to the ones in a rigid cage.