论文标题

图形信号处理的自适应标志算法

Adaptive Sign Algorithm for Graph Signal Processing

论文作者

Yan, Yi, Kuruoglu, Ercan E., Altinkaya, Mustafa A.

论文摘要

在当前数据丰度的时代,不规则结构化数据的有效且健壮的在线处理技术至关重要。在本文中,我们建议在冲动噪声下用于在线图信号估计的经典自适应标志算法的图形/网络版本。最近引入的图形自适应最小平方正方形算法在非高斯冲动噪声下是不稳定的,并且具有较高的计算复杂性。这项工作中提出的图形符号算法基于最低色散标准,因此冲动噪声不会阻碍其估计质量。与最近提出的图形自适应最低平均p-th功率算法不同,我们的图形 - 符号算法可以在没有事先了解噪声分布的情况下运行。与现有的自适应图信号处理算法相比,提出的图形符号算法的运行时间较低,因此其运行时间更快。在稳态和时变图信号估计上,使用带限性和采样的光谱特性,图形 - 符号算法在由Alpha Stable,Cauchy,Cauchy,Student,Student t或laplace分布的冲动性噪声下表现出快速,稳定和稳健的图形信号估计性能。

Efficient and robust online processing technique of irregularly structured data is crucial in the current era of data abundance. In this paper, we propose a graph/network version of the classical adaptive Sign algorithm for online graph signal estimation under impulsive noise. Recently introduced graph adaptive least mean squares algorithm is unstable under non-Gaussian impulsive noise and has high computational complexity. The Graph-Sign algorithm proposed in this work is based on the minimum dispersion criterion and therefore impulsive noise does not hinder its estimation quality. Unlike the recently proposed graph adaptive least mean p-th power algorithm, our Graph-Sign algorithm can operate without prior knowledge of the noise distribution. The proposed Graph-Sign algorithm has a faster run time because of its low computational complexity compared to the existing adaptive graph signal processing algorithms. Experimenting on steady-state and time-varying graph signals estimation utilizing spectral properties of bandlimitedness and sampling, the Graph-Sign algorithm demonstrates fast, stable, and robust graph signal estimation performance under impulsive noise modeled by alpha stable, Cauchy, Student's t, or Laplace distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源