论文标题

一类类似星光的功能和$ q $ starlike功能的第三汉克尔决定因素的尖锐界限

Sharp bounds of third Hankel determinant for a class of starlike functions and a subclass of $q$-starlike functions

论文作者

Banga, Shagun, Kumar, S. Sivaprasad

论文摘要

在几何函数理论中,在本文中,遵循系数绑定问题的趋势,我们获得了$ | h_3(1)| $的明确界限,用于$ \ m nathcal {s}^*$,属于starlike函数,$ \ mathcal {sl} _q^$,$ q $ q $ - q $ - q $ - q $ - qu $ - starlike-starlike功能与LemlensiScate cass l lememliscate of Bernoill of Bernoili of bernoili of bernOuli。在初始类上的界限也对现有的已知结合和后一类的界限进行了改进,从而推广了先前的已知结果。此外,我们确定了极端功能,以证明结果的清晰度。

Following the trend of coefficient bound problems in Geometric Function Theory, in the present paper, we obtain the sharp bound of $|H_3(1)|$ for the class $\mathcal{S}^*$, of starlike functions and $\mathcal{SL}_q^*$, of $q$- starlike functions related with lemniscate of Bernoulli. Bound on the initial class is also an improvement over the existing known bound and the bound on the latter class generalizes the prior known outcome. Further, we determine the extremal functions to prove the sharpness of our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源