论文标题

蓝色大理石,停滞的盖子:动态形态可以避免水世界吗?

Blue marble, stagnant lid: Could dynamic topography avert a waterworld?

论文作者

Guimond, Claire Marie, Rudge, John, Shorttle, Oliver

论文摘要

湿多岩石系外行星上的地形可能会将土地提高到其海平面上方。尽管土地抬高是许多复杂过程的产物,但在任何地球动力学行星上的大规模地形特征是表面下方的对流地幔的表达。这种所谓的“动态地形”存在于行星的构造政权或火山主义方面。它具有一些假设的幅度可以通过对流的数值模拟作为地幔雷利数的函数来估计。我们使用依赖温度依赖性粘度的2D对流模型在停滞的盖子行星上开发了新的缩放关系。这些量表应用于1D热历史模型,以探索动态形貌如何随范围内的可观察到广泛的参数空间而变化。动态地形幅度转化为海盆能力,这是淹没整个表面所需的最小水量。盆地能力随着行星质量而陡峭地增加,而不是水本身的量,假设水清单是恒定的行星质量分数。我们发现,仅动态支撑的地形就足以维持地面大小的停滞盖子行星的地下土地,地表水清单在最有利的热状态下,其质量约为10美元^{ - 4} $乘以它们的质量。通过仅考虑地球上约有1公里幅度的动态地形,这些结果代表了真正的海洋盆地能力的下限。我们的工作表明,确定性的地球物理建模可以为低质量行星的土地倾向的变异性提供信息。

Topography on a wet rocky exoplanet could raise land above its sea level. Although land elevation is the product of many complex processes, the large-scale topographic features on any geodynamically-active planet are the expression of the convecting mantle beneath the surface. This so-called "dynamic topography" exists regardless of a planet's tectonic regime or volcanism; its amplitude, with a few assumptions, can be estimated via numerical simulations of convection as a function of the mantle Rayleigh number. We develop new scaling relationships for dynamic topography on stagnant lid planets using 2D convection models with temperature-dependent viscosity. These scalings are applied to 1D thermal history models to explore how dynamic topography varies with exoplanetary observables over a wide parameter space. Dynamic topography amplitudes are converted to an ocean basin capacity, the minimum water volume required to flood the entire surface. Basin capacity increases less steeply with planet mass than does the amount of water itself, assuming a water inventory that is a constant planetary mass fraction. We find that dynamically-supported topography alone could be sufficient to maintain subaerial land on Earth-size stagnant lid planets with surface water inventories of up to approximately $10^{-4}$ times their mass, in the most favourable thermal states. By considering only dynamic topography, which has ~1-km amplitudes on Earth, these results represent a lower limit to the true ocean basin capacity. Our work indicates that deterministic geophysical modelling could inform the variability of land propensity on low-mass planets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源