论文标题
掉落不可扩展的网络的过度阻尼动力学:解决方案的存在
Overdamped Dynamics of a Falling Inextensible Network: Existence of Solutions
论文作者
论文摘要
我们研究了不可延迟的Triod的过度阻尼运动的方程,并在重力作用下具有三个固定末端和一个自由连接。该问题可以表示为PDE系统,该系统涉及未知的Lagrange乘数和与自由移动连接有关的非标准边界条件。它也可以正式解释为在概率度量的Otto-Wasserstein空间的某个子手术中的势能的梯度流。我们证明了解决此问题的全球存在解决方案。
We study the equations of overdamped motion of an inextensible triod with three fixed ends and a free junction under the action of gravity. The problem can be expressed as a system of PDE that involves unknown Lagrange multipliers and non-standard boundary conditions related to the freely moving junction. It can also be formally interpreted as a gradient flow of the potential energy on a certain submanifold of the Otto-Wasserstein space of probability measures. We prove global existence of generalized solutions to this problem.