论文标题

脉冲峰值迁移在磁铁SGR 1830-0645的爆发衰减中:地壳运动和磁层不变

Pulse Peak Migration during the Outburst Decay of the Magnetar SGR 1830-0645: Crustal Motion and Magnetospheric Untwisting

论文作者

Younes, G., Lander, S. K., Baring, M. G., Enoto, T., Kouveliotou, C., Wadiasingh, Z., Ho, W., Harding, A. K., Arzoumanian, Z., Gendreau, K. C., Guver, T., Hu, C. -P., Malacaria, C., Ray, P. S., Strohmayer, T.

论文摘要

磁场,具有磁场强度的孤立的中子星,通常$ \ gtrsim10^{14} $ g,表现出独特的长达月的爆发时期,在此期间,经常观察到软X射线脉冲曲线的强烈演变以及非热磁层发射成分。在最近爆发衰减的前37天内,使用对Magnetar SGR 1830-0645的几乎每天的观察结果,可以清楚地观察到脉冲峰迁移,从而将脉冲形状从最初的三峰言论转化为单峰型号。这种峰值合并以前从未见过磁铁。我们的高分辨率相分辨光谱分析显示,尽管初始脉冲形状复杂,但温度没有显着演变。然而,推断的表面热点在高峰迁移和爆发衰减期间收缩。我们建议这种进化的两个可能的起源。对于表面的内部加热,地壳的构造运动可能是其根本原因。这种地壳运动的推断速度为$ \ simsim100 $ 〜m〜天$^{ - 1} $,将驾驶区域的密度限制为$ρ\ sim10^{10} $ 〜g〜cm $^cm $^{ - 3} $,以$ \ sim200 $ 〜m的深度。另外,可以通过具有通量管或绳索的扭曲磁层的粒子轰击来加热热点,这有点像太阳冠状环,这些冠状动脉环在30-40〜天的时间表上取消并消散。然后,峰迁移可能是由于场线脚步运动(必然由地壳运动驱动)和发展表面辐射横梁的组合。这些新颖的数据集描绘了与磁铁爆发相关的动力学的生动图片,但它也强调了对更通用的理论图片的需求,在串联中考虑了磁层和地壳。

Magnetars, isolated neutron stars with magnetic field strengths typically $\gtrsim10^{14}$~G, exhibit distinctive months-long outburst epochs during which strong evolution of soft X-ray pulse profiles, along with nonthermal magnetospheric emission components, is often observed. Using near-daily NICER observations of the magnetar SGR 1830-0645 during the first 37 days of a recent outburst decay, a pulse peak migration in phase is clearly observed, transforming the pulse shape from an initially triple-peaked to a single-peaked profile. Such peak merging has not been seen before for a magnetar. Our high-resolution phase-resolved spectroscopic analysis reveals no significant evolution of temperature despite the complex initial pulse shape. Yet the inferred surface hot spots shrink during the peak migration and outburst decay. We suggest two possible origins for this evolution. For internal heating of the surface, tectonic motion of the crust may be its underlying cause. The inferred speed of this crustal motion is $\lesssim100$~m~day$^{-1}$, constraining the density of the driving region to $ρ\sim10^{10}$~g~cm$^{-3}$, at a depth of $\sim200$~m. Alternatively, the hot spots could be heated by particle bombardment from a twisted magnetosphere possessing flux tubes or ropes, somewhat resembling solar coronal loops, that untwist and dissipate on the 30-40~day timescale. The peak migration may then be due to a combination of field-line footpoint motion (necessarily driven by crustal motion) and evolving surface radiation beaming. These novel dataset paints a vivid picture of the dynamics associated with magnetar outbursts, yet it also highlights the need for a more generic theoretical picture where magnetosphere and crust are considered in tandem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源