论文标题

使用混合模型DATA驱动方案的长途多通道光纤传输的快速准确波形建模

Fast and accurate waveform modeling of long-haul multi-channel optical fiber transmission using a hybrid model-data driven scheme

论文作者

Yang, Hang, Niu, Zekun, Zhao, Haochen, Xiao, Shilin, Hu, Weisheng, Yi, Lilin

论文摘要

光纤中光波传播的建模是快速准确求解非线性Schrödinger方程(NLSE)的任务,并且可以启用光学系统设计,数字信号处理验证和快速波形计算。全日制和全频信息的传统波形建模是拆分步骤傅立叶方法(SSFM),长期以来,它在长途波长多路复用(WDM)光纤通信系统中一直被认为是具有挑战性的,因为这是非常耗时的。在这里,我们提出了一个线性非线性特征解耦分布(FDD)波形建模方案,以模拟Long-Haul WDM光纤通道,其中通道线性效应由NLSE衍生的模型驱动的方法建模,非线性效应由数据驱动的深度学习方法建模。同时,所提出的方案仅着眼于一翼纤维距离拟合,然后递归传输模型以达到所需的传输距离。事实证明,所提出的建模方案具有很高的精度,高计算速度以及可用于不同光学发射功率,调制格式,通道数和传输距离的鲁棒概括能力。对于每种输入条件,使用SSFM的FDD波形建模方案的总运行时间仅为3分钟,而不是2小时以上,这可以减少98%的计算时间。考虑到通过调整系统参数进行多轮优化,复杂性降低非常重要。该结果代表了非线性纤维建模的显着改善,并为解决NLSE样偏微分方程和光纤物理问题的解决方案打开了新的观点。

The modeling of optical wave propagation in optical fiber is a task of fast and accurate solving the nonlinear Schrödinger equation (NLSE), and can enable the optical system design, digital signal processing verification and fast waveform calculation. Traditional waveform modeling of full-time and full-frequency information is the split-step Fourier method (SSFM), which has long been regarded as challenging in long-haul wavelength division multiplexing (WDM) optical fiber communication systems because it is extremely time-consuming. Here we propose a linear-nonlinear feature decoupling distributed (FDD) waveform modeling scheme to model long-haul WDM fiber channel, where the channel linear effects are modelled by the NLSE-derived model-driven methods and the nonlinear effects are modelled by the data-driven deep learning methods. Meanwhile, the proposed scheme only focuses on one-span fiber distance fitting, and then recursively transmits the model to achieve the required transmission distance. The proposed modeling scheme is demonstrated to have high accuracy, high computing speeds, and robust generalization abilities for different optical launch powers, modulation formats, channel numbers and transmission distances. The total running time of FDD waveform modeling scheme for 41-channel 1040-km fiber transmission is only 3 minutes versus more than 2 hours using SSFM for each input condition, which achieves a 98% reduction in computing time. Considering the multi-round optimization by adjusting system parameters, the complexity reduction is significant. The results represent a remarkable improvement in nonlinear fiber modeling and open up novel perspectives for solution of NLSE-like partial differential equations and optical fiber physics problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源