论文标题
1D光子晶体中拓扑模式的Wannier功能方法
Wannier Function Methods for Topological Modes in 1D Photonic Crystals
论文作者
论文摘要
在这项工作中,我们使用Wannier函数来分析一维光子晶体中的拓扑相变。我们首先在一个维度上审查了指数局部局部浮力功能的构建,并展示如何为光子系统构造它们。然后,我们应用这些工具来研究Su-Schrieffer-Heeger模型的光子类似物。我们使用光子威尼斯函数来构建拓扑相变的定量准确近似模型,并计算拓扑缺陷状态的定位。最后,我们讨论了我们的工作对光子晶体的频带表示的含义。
In this work, we use Wannier functions to analyze topological phase transitions in one dimensional photonic crystals. We first review the construction of exponentially localized Wannier functions in one dimension, and show how to numerically construct them for photonic systems. We then apply these tools to study a photonic analog of the Su-Schrieffer-Heeger model. We use photonic Wannier functions to construct a quantitatively accurate approximate model for the topological phase transition, and compute the localization of topological defect states. Finally, we discuss the implications of our work for the study of band representations for photonic crystals.