论文标题
对3D-2D碳纳米牛角-MOS2异质结构的受控化学功能化具有增强的电催化活性,以减少质子
Controlled chemical functionalization toward 3D-2D carbon nanohorn-MoS2 heterostructures with enhanced electrocatalytic activity for protons reduction
论文作者
论文摘要
由纳米材料组合引起的新型异质结构的实现是一种修改其物理化学和电催化特性的有效方法,从而使它们源于其各个成分所产生的增强特征。具有高孔隙率,较大的特异性表面积和良好的电导率的碳纳米角(CNHS),MOS2拥有多个电催化活性位点,但缺乏明显的电导率,可靠的相互作用和有效的结构,可以成为促进蛋白质对分子氢的蛋白质减少的策略。本文中,我们以逐步的方法共价引入CNHS的圆锥形尖端和侧壁的互补官能团,以及MOS2的基础平面,在路由3D-2D CNH-MOS2异质结构的构造中。 MOS2在CNHS上的增加增加,改善和促进了相邻CNHS中的电荷定位和转移以及大量的活性位点,可为质子减少与商业pt/c相同的质子减少带来出色的电催化活性。我们已经注册了分钟的电势,低TAFEL斜率和较小的电荷转移电阻,用于电催化从新准备的0.029 V,71 mV/dec和34.5Ω的新制备的异质结构的演化。此外,在执行10,000个正在进行的电催化循环后,验证了3D-2D CNH-MOS2异质结构的稳定性。
The realization of novel heterostructures arising from the combination of nanomaterials is an effective way to modify their physicochemical and electrocatalytic properties, giving them enhanced characteristics stemming from their individual constituents. Interfacing carbon nanohorns (CNHs) possessing high porosity, large specific surface area and good electrical conductivity, with MoS2 owning multiple electrocatalytic active sites but lacking significant conductivity, robust interactions and effective structure, can be a strategy to boost the electrocatalytic reduction of protons to molecular hydrogen. Herein, we covalently introduce, in a stepwise approach, complementary functional groups at the conical tips and sidewalls of CNHs, along with the basal plane of MoS2, en route the construction of 3D-2D CNH-MoS2 heterostructures. The increased MoS2 loading onto CNHs, improving and facilitating charge delocalization and transfer in neighboring CNHs, along with the plethora of active sites, results in excellent electrocatalytic activity for protons reduction same to that of commercial Pt/C. We have registered minute overpotential, low Tafel slope and small charge-transfer resistance for electrocatalyzing the evolution of hydrogen from the newly prepared heterostructure of 0.029 V, 71 mV/dec and 34.5 Ω, respectively. Furthermore, the stability of the 3D-2D CNH-MoS2 heterostructure was validated after performing 10,000 ongoing electrocatalytic cycles.