论文标题
de Rham兼容的深神经网络FEM
De Rham compatible Deep Neural Network FEM
论文作者
论文摘要
在一般常规的简单分区上,有界多层域的$ \ MATHCAL {T} $ $ω\ subset \ subset \ mathbb {r}^d $,$ d \ in \ {2,3 \} $,我们构造了所有decte rham spectere consterce fime conpection in \ emph {2,3 \ _这些包括分段常数功能的空间,连续的分段线性(CPWL)函数,经典的``raviart-thomas element''和``nédélecEdgeelement''。除了CPWL案例外,我们的网络体系结构同时采用relu(整流线性单元)和BISU(二进制步骤单元)激活来捕获不连续性。在CPWL函数的重要情况下,我们证明与纯净的网络一起使用足够。我们的构建和DNN体系结构概括了先前的结果,因为DNN仿真需要对$ω$的常规简单分区$ \ MATHCAL {t} $的几何限制。此外,对于CPWL功能,我们的DNN构造在任何维度$ d \ geq 2 $中都是有效的。我们的``fe-net''是在非convex polyhedra $ω\ subset \ subset \ mathbb {r}^3 $中的变体正确,结构上的近似中需要的``fe-net''。因此,它们是应用``物理知识nns''或``深度ritz方法''的方法的必要成分,该方法通过深度学习技术在电磁场模拟中。我们表明我们的构造对高阶兼容空间和其他非兼容的离散类别,尤其是``crouzeix-raviart''''''''''''''''''''和杂交,高阶(HHO)方法。
On general regular simplicial partitions $\mathcal{T}$ of bounded polytopal domains $Ω\subset \mathbb{R}^d$, $d\in\{2,3\}$, we construct \emph{exact neural network (NN) emulations} of all lowest order finite element spaces in the discrete de Rham complex. These include the spaces of piecewise constant functions, continuous piecewise linear (CPwL) functions, the classical ``Raviart-Thomas element'', and the ``Nédélec edge element''. For all but the CPwL case, our network architectures employ both ReLU (rectified linear unit) and BiSU (binary step unit) activations to capture discontinuities. In the important case of CPwL functions, we prove that it suffices to work with pure ReLU nets. Our construction and DNN architecture generalizes previous results in that no geometric restrictions on the regular simplicial partitions $\mathcal{T}$ of $Ω$ are required for DNN emulation. In addition, for CPwL functions our DNN construction is valid in any dimension $d\geq 2$. Our ``FE-Nets'' are required in the variationally correct, structure-preserving approximation of boundary value problems of electromagnetism in nonconvex polyhedra $Ω\subset \mathbb{R}^3$. They are thus an essential ingredient in the application of e.g., the methodology of ``physics-informed NNs'' or ``deep Ritz methods'' to electromagnetic field simulation via deep learning techniques. We indicate generalizations of our constructions to higher-order compatible spaces and other, non-compatible classes of discretizations, in particular the ``Crouzeix-Raviart'' elements and Hybridized, Higher Order (HHO) methods.