论文标题
超图式多塔上的曲齿代数
Tridendriform algebras on hypergraph polytopes
论文作者
论文摘要
我们将Loday-Ronco和Burgunder-Ronco的作品扩展了在Associahedra和Permutohedra的脸上的Tridendriform分解上,再到其他Hypergraph Polytopes(或Nestohedra)的家族,包括简单,HyperCubes和一些新家庭。我们还将洗牌产物扩展到需要两个以上的参数,并因此定义了一种新的代数结构,即我们称为Polydendriform,可以从中合成原始的Tridendriform方程。
We extend the works of Loday-Ronco and Burgunder-Ronco on the tridendriform decomposition of the shuffle product on the faces of associahedra and permutohedra, to other families of hypergraph polytopes (or nestohedra), including simplices, hypercubes and some new families. We also extend the shuffle product to take more than two arguments, and define accordingly a new algebraic structure, that we call polydendriform, from which the original tridendriform equations can be crisply synthesized.