论文标题
使用基于变压器的预训练语言模型对可控文本生成的调查
A Survey of Controllable Text Generation using Transformer-based Pre-trained Language Models
论文作者
论文摘要
可控文本生成(CTG)是自然语言生成(NLG)领域的新兴领域。它被认为对于开发高级文本生成技术至关重要,这些技术可以更好地满足实际应用中的特定限制。近年来,使用大规模训练的语言模型(PLM)的方法,尤其是广泛使用的基于变压器的PLM,已成为NLG的新范式,从而产生了更多样化和流利的文本。但是,由于深神经网络的可解释性水平有限,需要保证这些方法的可控性。为此,使用基于变压器的PLM的可控文本生成已成为一个迅速增长但具有挑战性的新研究热点。最近的3 - 4年中出现了各种各样的方法,针对需要不同类型的受控约束的不同CTG任务。在本文中,我们对该领域的常见任务,主要方法和评估方法进行了系统的批判性审查。最后,我们讨论了该领域面临的挑战,并提出了各种有希望的未来方向。据我们所知,这是第一本从基于变压器的PLM的角度总结最先进的CTG技术的调查文件。我们希望它可以帮助相关领域的研究人员和从业人员快速跟踪学术和技术领域,从而为他们提供该地区的景观和未来研究的路线图。
Controllable Text Generation (CTG) is emerging area in the field of natural language generation (NLG). It is regarded as crucial for the development of advanced text generation technologies that better meet the specific constraints in practical applications. In recent years, methods using large-scale pre-trained language models (PLMs), in particular the widely used transformer-based PLMs, have become a new paradigm of NLG, allowing generation of more diverse and fluent text. However, due to the limited level of interpretability of deep neural networks, the controllability of these methods need to be guaranteed. To this end, controllable text generation using transformer-based PLMs has become a rapidly growing yet challenging new research hotspot. A diverse range of approaches have emerged in the recent 3-4 years, targeting different CTG tasks that require different types of controlled constraints. In this paper, we present a systematic critical review on the common tasks, main approaches, and evaluation methods in this area. Finally, we discuss the challenges that the field is facing, and put forward various promising future directions. To the best of our knowledge, this is the first survey paper to summarize the state-of-the-art CTG techniques from the perspective of Transformer-based PLMs. We hope it can help researchers and practitioners in the related fields to quickly track the academic and technological frontier, providing them with a landscape of the area and a roadmap for future research.