论文标题

多订单覆盖范围数据结构以计划多通信器观察

Multi Order Coverage data structure to plan multi-messenger observations

论文作者

Greco, Giuseppe, Punturo, Michele, Allen, Mark, Nebot, Ada, Fernique, Pierre, Baumann, Matthieu, Pineau, François-Xavier, Boch, Thomas, Derriere, Sébastien, Branchesi, Marica, Bawaj, Mateusz, Vocca, Helios

论文摘要

我们将多订单覆盖范围(MOC)地图的使用描述为管理“天空复杂区域”以计划多门票的实用方法。 MOC图是一个数据结构,可根据HealPix(分层等分区域隔离像素化)镶嵌,提供了天空上不规则形状和碎片区域的多分辨率表示。我们提出了MOC的新应用,并结合\ texttt {Astroplan}观察计划包,以实现天空区域的有效计算以及这些区域在特定时间的特定位置的可见性。 使用低延迟重力波警报的示例,以及带有三个观测值的模拟观测活动,我们表明使用MOC地图可以使用高水平的互操作性来支持观察计划计划。引力波检测在天空上具有相关的可靠区域定位。我们证明这些本地化可以用作MOC图,以及如何在可视化工具中使用它们,并处理(过滤,组合)以及它们用于访问虚拟天文台服务的实用性,这些效用可以“通过MOC”查询有关利益区域内的数据。生成MOC图和快速访问数据的便捷性意味着整个系统可以非常有效,因此可以快速考虑重力波Sky本地化的任何更新,并且可以快速实施对观察时间表计划的相应调整。我们提供示例Python代码作为这些方法的实际示例。此外,还提供了整个工作流程的视频演示。

We describe the use of Multi Order Coverage (MOC) maps as a practical way to manage complex regions of the sky for the planning of multi-messenger observations. MOC maps are a data structure that provides a multi-resolution representation of irregularly shaped and fragmentary regions over the sky based on the HEALPix (Hierarchical Equal Area isoLatitude Pixelization) tessellation. We present a new application of MOC, in combination with the \texttt{astroplan} observation planning package, to enable the efficient computation of sky regions and the visibility of these regions from a specific location on the Earth at a particular time. Using the example of the low-latency gravitational-wave alerts, and a simulated observational campaign with three observatories, we show that the use of MOC maps allows a high level of interoperability to support observing schedule plans. Gravitational-wave detections have an associated credible region localization on the sky. We demonstrate that these localizations can be encoded as MOC maps, and how they can be used in visualisation tools, and processed (filtered, combined) and also their utility for access to Virtual Observatory services which can be queried 'by MOC' for data within the region of interest. The ease of generating the MOC maps and the fast access to data means that the whole system can be very efficient, so that any updates on the gravitational-wave sky localization can be quickly taken into account and the corresponding adjustments to observing schedule plans can be rapidly implemented. We provide example python code as a practical example of these methods. In addition, a video demonstration of the entire workflow is available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源