论文标题

PT对称量子力学的简介 - 时间依赖性系统

An introduction to PT-symmetric quantum mechanics -- time-dependent systems

论文作者

Fring, Andreas

论文摘要

我将提供对PT-对称的非热量子系统的教学介绍,也就是说,它们在同时的奇偶校验转化(P)和时间逆转(T)下是不变的。我将解释如何利用这种抗线性对称性的广义版本来解释,这些类型的系统在其部分参数空间中具有真实的特征值光谱以及如何为它们建立一个一致的量子机械框架,以实现单一的时间进化。在第二部分中,我将解释如何将此框架扩展到明确依赖时间的哈密顿系统,并特别报告在这种情况下取​​得的最新进展。我将解释如何在此框架中构建基本的关键数量,与时间相关的时间相关的dyson地图以及对时间相关的schrödinger方程的解决方案,以代数方式使用时间依赖性的darboux转换,利用lewis-riesenfeld novers varriants,点转换和一些近似方法。我评论了该指标的歧义,并证明这甚至可以导致无限的指标运营商。我以某些应用在PT平衡耦合振荡器上进行了结论,证明了时间相关的双孔和不稳定的Anharmonic振荡器的等效性,并展示了与时间依赖于时间无关的参数理论中的无态PT $ symymmemememalical pt $ symmemememalizemempletally symmemptical损坏的区域在实质性的时间依赖于时间依赖时间相关的系统中。我讨论这是如何导致原本快速衰减的von Neumann熵的延长。所谓的熵突然死亡以有限的价值停止。

I will provide a pedagogical introduction to non-Hermitian quantum systems that are PT-symmetric, that is they are left invariant under a simultaneous parity transformation (P) and time-reversal (T). I will explain how generalised versions of this antilinear symmetry can be utilised to explain that these type of systems possess real eigenvalue spectra in parts of their parameter spaces and how to set up a consistent quantum mechanical framework for them that enables a unitary time-evolution. In the second part I will explain how to extend this framework to explicitly time-dependent Hamiltonian systems and report in particular on recent progress made in this context. I will explain how to construct the essential key quantity in this framework, the time-dependent Dyson map and metric and solutions to the time-dependent Schrödinger equation, in an algebraic fashion, using time-dependent Darboux transformations, utilising Lewis-Riesenfeld invariants, point transformations and some approximation methods. I comment on the ambiguities of this metric and demonstrate that this can even lead to infinite series of metric operators. I conclude with some applications to PT-symmetrically coupled oscillators, demonstrate the equivalence of the time-dependent double wells and unstable anharmonic oscillators and show how the unphysical PT$-symmetrically broken regions in the parameter space for the time-independent theory becomes physical in the explicitly time-dependent systems. I discuss how this leads to a prolongation of the otherwise rapidly decaying von Neumann entropy. The so-called sudden death of the entropy is stopped at a finite value.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源