论文标题
稳定地图Kontsevich空间的表示稳定性
Representation stability for the Kontsevich space of stable maps
论文作者
论文摘要
对于固定的代数品种$ x $,曲线类别$α\在n_1(x)$中以及\ in \ mathbb n $中的$ g \属属,我们考虑$ s_n $表示的顺序,从稳定映射的Kontsevich Space of stable Maps of stable Maps to $ x $,$ x $,$ x $,$ x $,$ x $ \ bar m_ f bar m_ v,g,g,n} $ a)中获得的顺序。使用有限集和溢流类别,我们证明了一种表示稳定性定理,该定理控制了这一件表示序列的行为,以足够大的$ n $。
For a fixed algebraic variety $X$, curve class $α\in N_1(X)$, and genus $g \in \mathbb N$, we consider the sequence of $S_n$ representations obtained from the homology of the Kontsevich space of stable maps to $X$, $\bar M_{g,n}(X,α)$. Using the category of finite sets and surjections, we prove a representation stability theorem that governs the behavior of this sequence of representations for $n$ sufficiently large.