论文标题

神经Koopman Lyapunov控制

Neural Koopman Lyapunov Control

论文作者

Zinage, Vrushabh, Bakolas, Efstathios

论文摘要

对于未知的非线性控制系统,学习和综合稳定控制器对于现实世界和工业应用来说是一个具有挑战性的问题。 Koopman操作员理论允许人们通过线性系统和非线性控制系统的镜头分析非线性系统。这些方法的关键思想在于,非线性系统的坐标转换为Koopman可观察物,它们是允许将原始系统(控制系统)表示为较高尺寸线性(双线性控制)系统的坐标。但是,对于非线性控制系统,通过应用基于Koopman操作员的学习方法获得的双线性控制模型不一定是可稳定的。同时识别可稳定的抬高双线性控制系统以及相关的Koopman可观察物仍然是一个开放的问题。在本文中,我们提出了一个框架来构建这些可稳定的双线性模型,并通过同时学习针对基础未知的控制仿射非线性系统的双线性Koopman嵌入双线性的Koopman以及对控制Lyapunov函数(CLF)的基于Koopman基于Koop的BiLinear模型,并使用Learner和Falsifier来确定其相关的可观察物。因此,我们提出的方法为基于双线性系统的未知控制仿射非线性控制系统的基于Koopman的表示提供了可证明的渐近稳定性。提供了数值模拟,以验证我们提出的一类稳定反馈控制器对未知控制型非线性系统的功效。

Learning and synthesizing stabilizing controllers for unknown nonlinear control systems is a challenging problem for real-world and industrial applications. Koopman operator theory allows one to analyze nonlinear systems through the lens of linear systems and nonlinear control systems through the lens of bilinear control systems. The key idea of these methods lies in the transformation of the coordinates of the nonlinear system into the Koopman observables, which are coordinates that allow the representation of the original system (control system) as a higher dimensional linear (bilinear control) system. However, for nonlinear control systems, the bilinear control model obtained by applying Koopman operator based learning methods is not necessarily stabilizable. Simultaneous identification of stabilizable lifted bilinear control systems as well as the associated Koopman observables is still an open problem. In this paper, we propose a framework to construct these stabilizable bilinear models and identify its associated observables from data by simultaneously learning a bilinear Koopman embedding for the underlying unknown control affine nonlinear system as well as a Control Lyapunov Function (CLF) for the Koopman based bilinear model using a learner and falsifier. Our proposed approach thereby provides provable guarantees of asymptotic stability for the Koopman based representation of the unknown control affine nonlinear control system as a bilinear system. Numerical simulations are provided to validate the efficacy of our proposed class of stabilizing feedback controllers for unknown control-affine nonlinear systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源