论文标题
用CMB极化统计各向异性探测周边培养基
Probing the circumgalactic medium with CMB polarization statistical anisotropy
论文作者
论文摘要
随着宇宙微波背景(CMB)光子穿越宇宙,可以通过Thomson散射(与综合电子密度成正比;光学深度)和compton倒数散射(与综合电子压力成比例;热太阳VICH-SUNYAEV-ZEL'DOVICH效应)。光学深度$τ$和compton $ y $参数中各向异性的测量由星系和星系簇印记,因此对近代培养基的热力学特性敏感。我们使用分析晕模型来预测光学深度的功率谱($ττ$),光学深度与compton $ y $ parameter($τy$)之间的互相关,以及光学脱位与星系聚类($τg$)之间的互相关($τg$),以及将此模型与相关模型进行比较。我们使用最初设计的技术在$ z \ Lessim 3 $上限制了光晕的光学深度,该技术最初设计用于在更高的红移范围内限制斑驳的电离。对于CMB-S4样实验和VRO样光学调查,预测的信噪比分别为2.6、8.5和13。我们表明,对这些探针的联合分析可以将光晕的密度曲线的幅度限制在6.5%,而压力曲线的幅度为13%,在压力曲线的外坡上边缘化。这些约束转化为与星系进化物理学相关的天体物理参数,例如气体质量分数,$ f _ {\ rm g} $,可以将其限制为$ z \ sim 0 $的5.3%的不确定性,假设是密度曲线形状的潜在模型的$ z \ sim 0 $。此处介绍的互相关是与其他CMB和星系互相关的补充,因为它们不需要光谱银河红移,并且是这种相关性如何有力地探究星体演化天体物理学的另一个例子。
As cosmic microwave background (CMB) photons traverse the Universe, anisotropies can be induced via Thomson scattering (proportional to the integrated electron density; optical depth) and inverse Compton scattering (proportional to the integrated electron pressure; thermal Sunyaev-Zel'dovich effect). Measurements of anisotropy in optical depth $τ$ and Compton $y$ parameter are imprinted by the galaxies and galaxy clusters and are thus sensitive to the thermodynamic properties of circumgalactic medium and intergalactic medium. We use an analytic halo model to predict the power spectrum of the optical depth ($ττ$), the cross-correlation between the optical depth and the Compton $y$ parameter ($τy$), as well as the cross-correlation between the optical depth and galaxy clustering ($τg$), and compare this model to cosmological simulations. We constrain the optical depths of halos at $z\lesssim 3$ using a technique originally devised to constrain patchy reionization at a much higher redshift range. The forecasted signal-to-noise ratio is 2.6, 8.5, and 13, respectively, for a CMB-S4-like experiment and a VRO-like optical survey. We show that a joint analysis of these probes can constrain the amplitude of the density profiles of halos to 6.5% and the pressure profile to 13%, marginalizing over the outer slope of the pressure profile. These constraints translate to astrophysical parameters related to the physics of galaxy evolution, such as the gas mass fraction, $f_{\rm g}$, which can be constrained to 5.3% uncertainty at $z\sim 0$, assuming an underlying model for the shape of the density profile. The cross-correlations presented here are complementary to other CMB and galaxy cross-correlations since they do not require spectroscopic galaxy redshifts and are another example of how such correlations are a powerful probe of the astrophysics of galaxy evolution.