论文标题
使用上下文感知的人类轨迹预测在动态环境中进行运动计划
Motion Planning in Dynamic Environments Using Context-Aware Human Trajectory Prediction
论文作者
论文摘要
多年来,运动计划,映射和人类轨迹预测的单独领域已大大提高。但是,文献在提供实用框架方面仍然很少,使移动操纵者能够执行全身运动并解释了移动障碍的预测运动。使用距离字段的基于优化的运动计划方法已经遭受更新环境表示所需的高计算成本。我们证明,与从头开始计算距离场相比,GPU加速预测的复合距离场可显着减少计算时间。我们将这项技术与完整的运动计划和感知框架相结合,该框架是人类在动态环境中的预测运动,从而实现了包含预测动作的反应性和先发制人的运动计划。为了实现这一目标,我们提出并实施了一种新型的人类轨迹预测方法,该方法将意图识别与基于轨迹优化的运动计划相结合。我们使用板载摄像头的实时RGB-D传感器数据在现实世界中的人类支持机器人(HSR)上验证了所得框架。除了提供公开可用数据集的分析外,我们还发布了牛津室内人类运动(Oxford-IHM)数据集,并在人类轨迹预测中展示了最先进的表现。牛津-IHM数据集是人类轨迹预测数据集,人们在室内环境中在感兴趣的地区之间行走。静态和机器人安装的RGB-D摄像机都可以通过运动捕获系统进行跟踪时观察人员。
Over the years, the separate fields of motion planning, mapping, and human trajectory prediction have advanced considerably. However, the literature is still sparse in providing practical frameworks that enable mobile manipulators to perform whole-body movements and account for the predicted motion of moving obstacles. Previous optimisation-based motion planning approaches that use distance fields have suffered from the high computational cost required to update the environment representation. We demonstrate that GPU-accelerated predicted composite distance fields significantly reduce the computation time compared to calculating distance fields from scratch. We integrate this technique with a complete motion planning and perception framework that accounts for the predicted motion of humans in dynamic environments, enabling reactive and pre-emptive motion planning that incorporates predicted motions. To achieve this, we propose and implement a novel human trajectory prediction method that combines intention recognition with trajectory optimisation-based motion planning. We validate our resultant framework on a real-world Toyota Human Support Robot (HSR) using live RGB-D sensor data from the onboard camera. In addition to providing analysis on a publicly available dataset, we release the Oxford Indoor Human Motion (Oxford-IHM) dataset and demonstrate state-of-the-art performance in human trajectory prediction. The Oxford-IHM dataset is a human trajectory prediction dataset in which people walk between regions of interest in an indoor environment. Both static and robot-mounted RGB-D cameras observe the people while tracked with a motion-capture system.