论文标题

GPU加速了5G和超越URLLC系统的部分线性多源检测

GPU-accelerated partially linear multiuser detection for 5G and beyond URLLC systems

论文作者

Mehlhose, Matthias, Marcus, Guillermo, Schäufele, Daniel, Awan, Daniyal Amir, Binder, Nikolaus, Kasparick, Martin, Cavalcante, Renato L. G., Stańczak, Sławomir, Keller, Alexander

论文摘要

在这项可行性研究中,我们在gpu-accelerated平台上重现了内核希尔伯特空间(RKHSS)时实现了最近提出的部分线性多源检测算法。已经提出了将线性检测的鲁棒性与非线性方法的功率结合的部分线性多源检测,它已被提出,用于与非正交多重访问(NOMA)的大规模连通性场景。这是一种有前途的方法,但是检测接收到的正交频分多路复用(OFDM)无线电框架内的有效载荷需要执行大量内部产品操作,这是算法的主要计算负担。尽管内部产品操作由简单的内核评估组成,但它们的大量数量在超低延迟(ULL)应用中构成了挑战,因为计算内部产品所需的时间可能会超过亚毫秒延迟的要求。为了解决这个问题,这项研究证明了通过大规模并行化的内部产品操作加速。结果是GPU加速的实时OFDM接收器,使子毫秒延迟检测能够满足第五代(5G)以及超出超可靠性和低潜伏期通信(URLLC)系统的要求。此外,本研究中探索和证明的并行化和加速技术可以扩展到希尔伯特空间中的许多其他信号处理算法,例如基于对凸集集合(POC)和自适应投射的亚grainatient方法(APSM)算法的投影的算法。实验结果和与最先进的比较证实了我们技术的有效性。

In this feasibility study, we have implemented a recently proposed partially linear multiuser detection algorithm in reproducing kernel Hilbert spaces (RKHSs) on a GPU-accelerated platform. Partially linear multiuser detection, which combines the robustness of linear detection with the power of nonlinear methods, has been proposed for a massive connectivity scenario with the non-orthogonal multiple access (NOMA). This is a promising approach, but detecting payloads within a received orthogonal frequency division multiplexing (OFDM) radio frame requires the execution of a large number of inner product operations, which are the main computational burden of the algorithm. Although inner-product operations consist of simple kernel evaluations, their vast number poses a challenge in ultra-low latency (ULL) applications, because the time needed for computing the inner products might exceed the sub-millisecond latency requirement. To address this problem, this study demonstrates the acceleration of the inner-product operations through massive parallelization. The result is a GPU-accelerated real-time OFDM receiver that enables sub-millisecond latency detection to meet the requirements of 5th generation (5G) and beyond ultra-reliable and low latency communications (URLLC) systems. Moreover, the parallelization and acceleration techniques explored and demonstrated in this study can be extended to many other signal processing algorithms in Hilbert spaces, such as those based on projection onto convex sets (POCS) and adaptive projected subgradient method (APSM) algorithms. Experimental results and comparisons with the state-of-art confirm the effectiveness of our techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源