论文标题

动态的本地可搜索对称加密

Dynamic Local Searchable Symmetric Encryption

论文作者

Minaud, Brice, Reichle, Michael

论文摘要

在本文中,我们首次解决动态记忆有效搜索的对称加密问题(SSE)。在术语“内存效率” SSE中,我们涵盖了本地SSE的目标,又涵盖了Page效率的SSE。我们方法的核心是这两个目标之间的新颖联系。我们介绍了一个称为“通用本地变换”的地图,该地图将其作为具有某些特殊功能的页面效率SSE方案,并输出具有较强位置属性的SSE方案。我们获得了几个结果。 (1)首先,对于页面效率SSE,我们构建一个具有页面效率$ O(\ log \ log \ log n)$和存储效率$ o(1)$的动态方案,称为layeredsse。 LayeredSse背后的主要技术创新是独立关注的两项分配过程的新加权扩展。 (2)第二,我们介绍了通用的本地变换,并将其与分层结合使用,以构建一个动态的SSE方案,并使用存储效率$ o(1)$,localitaly $ o(1)$,并阅读效率$ O(\ log \ log \ log \ log \ log \ log \ log \ log \ log \ n)$,条件是最长的列表是size $ o(n^{1-1/\ log log log \ log \ log \ log \ log log log log log log \ log log \ log log log log log log)$。在各个方面,这都与Asharov等人的纯静态结构相匹配。在Stoc 2016上发表:动态无需额外费用。 (3)最后,通过将通用局部变换应用于Bossuat等人的Tethys方案的变体。从Crypto 2021中,我们建立了一个无条件的静态SSE,具有存储效率$ O(1)$,local $ o(1)$,并阅读效率$ O(\ log^\ varepsilon n)$,用于任意的小常数$ \ varepsilon> 0 $。据我们所知,这是2014年Eurocrypt上现金和Tessaro提出的最接近的结构。

In this article, we tackle for the first time the problem of dynamic memory-efficient Searchable Symmetric Encryption (SSE). In the term "memory-efficient" SSE, we encompass both the goals of local SSE, and page-efficient SSE. The centerpiece of our approach is a novel connection between those two goals. We introduce a map, called the Generic Local Transform, which takes as input a page-efficient SSE scheme with certain special features, and outputs an SSE scheme with strong locality properties. We obtain several results. (1) First, for page-efficient SSE, we build a dynamic scheme with page efficiency $O(\log \log N)$ and storage efficiency $O(1)$, called LayeredSSE. The main technical innovation behind LayeredSSE is a new weighted extension of the two-choice allocation process, of independent interest. (2) Second, we introduce the Generic Local Transform, and combine it with LayeredSSE to build a dynamic SSE scheme with storage efficiency $O(1)$, locality $O(1)$, and read efficiency $O(\log\log N)$, under the condition that the longest list is of size $O(N^{1-1/\log \log λ})$. This matches, in every respect, the purely static construction of Asharov et al. presented at STOC 2016: dynamism comes at no extra cost. (3) Finally, by applying the Generic Local Transform to a variant of the Tethys scheme by Bossuat et al. from Crypto 2021, we build an unconditional static SSE with storage efficiency $O(1)$, locality $O(1)$, and read efficiency $O(\log^\varepsilon N)$, for an arbitrarily small constant $\varepsilon > 0$. To our knowledge, this is the construction that comes closest to the lower bound presented by Cash and Tessaro at Eurocrypt 2014.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源