论文标题

自动增强学习:概述

Automated Reinforcement Learning: An Overview

论文作者

Afshar, Reza Refaei, Zhang, Yingqian, Vanschoren, Joaquin, Kaymak, Uzay

论文摘要

强化学习和最近深厚的强化学习是解决以马尔可夫决策过程建模的顺序决策问题的流行方法。问题的RL建模并选择算法和超参数需要仔细考虑,因为不同的配置可能需要完全不同的性能。这些考虑主要是RL专家的任务;但是,RL在研究人员和系统设计师不是RL专家的其他领域逐渐流行。此外,通常手动做出许多建模决策,例如定义状态和行动空间,批处理大小以及批处理更新的频率以及时间段数量。由于这些原因,自动化RL框架的不同组成部分非常重要,并且近年来引起了很多关注。自动化RL提供了一个框架,在该框架中,RL的不同组件包括MDP建模,算法选择和超参数优化,并自动建模和定义。在本文中,我们探讨了可以在自动RL中使用的文献和目前的最新工作。此外,我们讨论了Autorl中的挑战,开放问题和研究方向。

Reinforcement Learning and recently Deep Reinforcement Learning are popular methods for solving sequential decision making problems modeled as Markov Decision Processes. RL modeling of a problem and selecting algorithms and hyper-parameters require careful considerations as different configurations may entail completely different performances. These considerations are mainly the task of RL experts; however, RL is progressively becoming popular in other fields where the researchers and system designers are not RL experts. Besides, many modeling decisions, such as defining state and action space, size of batches and frequency of batch updating, and number of timesteps are typically made manually. For these reasons, automating different components of RL framework is of great importance and it has attracted much attention in recent years. Automated RL provides a framework in which different components of RL including MDP modeling, algorithm selection and hyper-parameter optimization are modeled and defined automatically. In this article, we explore the literature and present recent work that can be used in automated RL. Moreover, we discuss the challenges, open questions and research directions in AutoRL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源