论文标题
通过感兴趣的3D区域学习形状的语义抽象
Learning Semantic Abstraction of Shape via 3D Region of Interest
论文作者
论文摘要
在本文中,我们专注于3D形状抽象和语义分析的两个任务。这与当前方法相反,后者仅着眼于3D形状抽象或语义分析。此外,以前的方法很难产生实例级别的语义结果,这限制了其应用。我们提出了一种新的方法,用于估计3D形状抽象和语义分析。我们的方法首先生成了3D形状的许多3D语义候选区域。然后,我们使用这些候选者直接预测语义类别,并使用深层卷积神经网络同时完善候选区域的参数。最后,我们设计了一种算法来融合预测的结果并获得最终的语义抽象,这证明是对标准非最大抑制作用的改进。实验结果表明,我们的方法可以产生最新的结果。此外,我们还发现我们的结果可以轻松地应用于实例级别的语义部分分割和形状匹配。
In this paper, we focus on the two tasks of 3D shape abstraction and semantic analysis. This is in contrast to current methods, which focus solely on either 3D shape abstraction or semantic analysis. In addition, previous methods have had difficulty producing instance-level semantic results, which has limited their application. We present a novel method for the joint estimation of a 3D shape abstraction and semantic analysis. Our approach first generates a number of 3D semantic candidate regions for a 3D shape; we then employ these candidates to directly predict the semantic categories and refine the parameters of the candidate regions simultaneously using a deep convolutional neural network. Finally, we design an algorithm to fuse the predicted results and obtain the final semantic abstraction, which is shown to be an improvement over a standard non maximum suppression. Experimental results demonstrate that our approach can produce state-of-the-art results. Moreover, we also find that our results can be easily applied to instance-level semantic part segmentation and shape matching.