论文标题
随机生成图
Generating graphs randomly
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Graphs are used in many disciplines to model the relationships that exist between objects in a complex discrete system. Researchers may wish to compare a network of interest to a "typical" graph from a family (or ensemble) of graphs which are similar in some way. One way to do this is to take a sample of several random graphs from the family, to gather information about what is "typical". Hence there is a need for algorithms which can generate graphs uniformly (or approximately uniformly) at random from the given family. Since a large sample may be required, the algorithm should also be computationally efficient. Rigorous analysis of such algorithms is often challenging, involving both combinatorial and probabilistic arguments. We will focus mainly on the set of all simple graphs with a particular degree sequence, and describe several different algorithms for sampling graphs from this family uniformly, or almost uniformly.