论文标题

互动数据分析与下一步的自然语言查询建议

Interactive Data Analysis with Next-step Natural Language Query Recommendation

论文作者

Wang, Xingbo, Cheng, Furui, Wang, Yong, Xu, Ke, Long, Jiang, Lu, Hong, Qu, Huamin

论文摘要

自然语言界面(NLIS)为用户提供了一种方便的方式,可以通过自然语言查询进行交互分析数据。然而,交互式数据分析是一个苛刻的过程,尤其是对于新手数据分析师而言。在探索来自不同域的大型且复杂的SQL数据库时,数据分析师不一定具有有关不同数据表和应用程序域的足够知识。它使他们无法系统地引起一系列与局部相关且有意义的查询,以探索目标域中的洞察力。我们开发一个具有逐步查询建议模块的NLI,以帮助用户选择适当的下一步探索操作。该系统采用数据驱动的方法来建议根据其查询日志对用户兴趣的应用程序域的语义相关和上下文感知的查询。此外,该系统可以帮助用户将查询历史记录和结果组织到仪表板中,以传达发现的数据见解。通过比较用户研究,我们表明,与没有建议模块的基线相比,我们的系统可以促进更有效和系统的数据分析过程。

Natural language interfaces (NLIs) provide users with a convenient way to interactively analyze data through natural language queries. Nevertheless, interactive data analysis is a demanding process, especially for novice data analysts. When exploring large and complex SQL databases from different domains, data analysts do not necessarily have sufficient knowledge about different data tables and application domains. It makes them unable to systematically elicit a series of topically-related and meaningful queries for insight discovery in target domains. We develop a NLI with a step-wise query recommendation module to assist users in choosing appropriate next-step exploration actions. The system adopts a data-driven approach to suggest semantically relevant and context-aware queries for application domains of users' interest based on their query logs. Also, the system helps users organize query histories and results into a dashboard to communicate the discovered data insights. With a comparative user study, we show that our system can facilitate a more effective and systematic data analysis process than a baseline without the recommendation module.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源