论文标题
紧凑型Kähler品种的可接受指标
Admissible metrics on compact Kähler varieties
论文作者
论文摘要
令$ x $为普通的紧凑型kähler品种,而$ \ mathcal {f} $是$ x $上的连贯的反身捆。我们研究了$ \ Mathcal {f} $上的可允许的Hermitian指标的存在。如果此外,$ \ Mathcal {f} $是坡度稳定的,我们还会研究其上的Hermitian-Yang-Mills指标的存在。如果人们能够证明奇异空间上的索波列夫不等式,那么存在。
Let $X$ be a normal compact Kähler variety, and $\mathcal{F}$ a coherent reflexive sheaf on $X$. We investigate the existence of admissible Hermitian metrics on $\mathcal{F}$. If moreover $\mathcal{F}$ is slope stable, we also study the existence of admissible Hermitian-Yang-Mills metrics on it. The existence will hold if one can prove a uniform Sobolev inequality on singular spaces.