论文标题

深度排名的金字塔模型,用于增强人群计数

Deep Rank-Consistent Pyramid Model for Enhanced Crowd Counting

论文作者

Gao, Jiaqi, Huang, Zhizhong, Lei, Yiming, Shan, Hongming, Wang, James Z., Wang, Fei-Yue, Zhang, Junping

论文摘要

大多数传统的人群计数方法都利用一个完全监督的学习框架来在场景图像和人群密度图之间建立映射。他们通常依靠大量昂贵且耗时的像素级注释来培训监督。减轻密集标签工作并提高计数精度的一种方法是利用大量未标记的图像。这归因于单个图像中固有的自我结构信息和等级一致性,在培训期间提供了其他定性关系监督。与在原始图像级别上利用排名关系的早期方法相反,我们探索了潜在特征空间内的等级一致关系。这种方法使能够合并众多金字塔部分订单,从而增强模型表示能力。一个值得注意的优势是它也可以增加未标记样品的利用率。具体来说,我们提出了一个深度的一致的金字塔模型(DREAM),该模型可以在潜在空间中充分利用跨粗到细金字塔特征的等级一致性,以增强人群的数量,并使用大量的未标记图像进行计数。此外,我们收集了一个新的未标记的人群计数数据集Fudan-UCC,其中包括4,000张用于培训的图像。与先前的半监督方法相比,在四个基准数据集,即UCF-QNRF,Shanghaitech Parta和Parta和UCF-CC-50上进行了广泛的实验。这些代码可在https://github.com/bridgeqiqi/dream上找到。

Most conventional crowd counting methods utilize a fully-supervised learning framework to establish a mapping between scene images and crowd density maps. They usually rely on a large quantity of costly and time-intensive pixel-level annotations for training supervision. One way to mitigate the intensive labeling effort and improve counting accuracy is to leverage large amounts of unlabeled images. This is attributed to the inherent self-structural information and rank consistency within a single image, offering additional qualitative relation supervision during training. Contrary to earlier methods that utilized the rank relations at the original image level, we explore such rank-consistency relation within the latent feature spaces. This approach enables the incorporation of numerous pyramid partial orders, strengthening the model representation capability. A notable advantage is that it can also increase the utilization ratio of unlabeled samples. Specifically, we propose a Deep Rank-consistEnt pyrAmid Model (DREAM), which makes full use of rank consistency across coarse-to-fine pyramid features in latent spaces for enhanced crowd counting with massive unlabeled images. In addition, we have collected a new unlabeled crowd counting dataset, FUDAN-UCC, comprising 4,000 images for training purposes. Extensive experiments on four benchmark datasets, namely UCF-QNRF, ShanghaiTech PartA and PartB, and UCF-CC-50, show the effectiveness of our method compared with previous semi-supervised methods. The codes are available at https://github.com/bridgeqiqi/DREAM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源