论文标题

通过转移学习和弱监管来解锁小农户耕作系统中的大规模作物域描述

Unlocking large-scale crop field delineation in smallholder farming systems with transfer learning and weak supervision

论文作者

Wang, Sherrie, Waldner, Francois, Lobell, David B.

论文摘要

作物野外边界有助于绘制作物类型,预测产量并向农民提供现场规模的分析。近年来,在工业农业系统中,深入学习的成功应用成功地应用了现场界限,但是由于(1)需要高分辨率卫星图像来划定的小领域,因此在小型持有人系统中仍然缺少野外边界数据集,并且(2)缺乏用于模型培训和验证的地面标签。在这项工作中,我们将转移学习和弱监督结合起来,以克服这些挑战,并证明了在印度的成功,我们有效地产生了10,000个新的现场标签。我们的最佳模型使用150万个分辨率空中斑点图像作为输入,在法国田野边界上进行最先进的神经网络,以及印度标签上的微型培训,以在印度的联合(IOU)达到0.86的中位数。如果使用480万分辨率的Planetscope图像,则最佳模型的中位数为0.72。实验还表明,法国的预培训可减少在数据集较小时,将给定性能水平达到给定性能水平的印度现场标签数量降低多达$ 20 \ times $。这些发现表明,我们的方法是描述目前缺乏现场边界数据集的世界区域中划定作物场的可扩展方法。我们公开发布了10,000个标签和描述模型,以促进社区创建现场边界图和新方法。

Crop field boundaries aid in mapping crop types, predicting yields, and delivering field-scale analytics to farmers. Recent years have seen the successful application of deep learning to delineating field boundaries in industrial agricultural systems, but field boundary datasets remain missing in smallholder systems due to (1) small fields that require high resolution satellite imagery to delineate and (2) a lack of ground labels for model training and validation. In this work, we combine transfer learning and weak supervision to overcome these challenges, and we demonstrate the methods' success in India where we efficiently generated 10,000 new field labels. Our best model uses 1.5m resolution Airbus SPOT imagery as input, pre-trains a state-of-the-art neural network on France field boundaries, and fine-tunes on India labels to achieve a median Intersection over Union (IoU) of 0.86 in India. If using 4.8m resolution PlanetScope imagery instead, the best model achieves a median IoU of 0.72. Experiments also show that pre-training in France reduces the number of India field labels needed to achieve a given performance level by as much as $20\times$ when datasets are small. These findings suggest our method is a scalable approach for delineating crop fields in regions of the world that currently lack field boundary datasets. We publicly release the 10,000 labels and delineation model to facilitate the creation of field boundary maps and new methods by the community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源