论文标题

对车辆网络无线边缘的多模式传感器数据的深入学习

Deep Learning on Multimodal Sensor Data at the Wireless Edge for Vehicular Network

论文作者

Salehi, Batool, Reus-Muns, Guillem, Roy, Debashri, Wang, Zifeng, Jian, Tong, Dy, Jennifer, Ioannidis, Stratis, Chowdhury, Kaushik

论文摘要

在车辆场景中,毫米波链路的光束选择是一个具有挑战性的问题,因为在所有候选梁对之间进行了详尽的搜索,因此不能肯定在短时间内完成。我们通过利用从激光雷达,相机图像和GPS等传感器收集的多模式数据来解决这个问题,从而解决了这一问题。我们提出了个人模式和分布式基于融合的深度学习(F-DL)体系结构,这些体系结构可以在本地以及移动边缘计算中心(MEC)进行,并进行了有关相关权衡的研究。我们还制定并解决了一个优化问题,该问题考虑了实用的光束搜索,MEC处理以及传感器到MEC数据传递延迟开销,以确定上述F-DL体系结构的输出维度。对公开可用的合成和本土现实世界中数据集进行的广泛评估的结果表明,比经典的仅射频横梁分别提高了95%和96%的光束选择速度。 F-DL在预测前10个最佳束对时,F-DL还优于最先进的技术。

Beam selection for millimeter-wave links in a vehicular scenario is a challenging problem, as an exhaustive search among all candidate beam pairs cannot be assuredly completed within short contact times. We solve this problem via a novel expediting beam selection by leveraging multimodal data collected from sensors like LiDAR, camera images, and GPS. We propose individual modality and distributed fusion-based deep learning (F-DL) architectures that can execute locally as well as at a mobile edge computing center (MEC), with a study on associated tradeoffs. We also formulate and solve an optimization problem that considers practical beam-searching, MEC processing and sensor-to-MEC data delivery latency overheads for determining the output dimensions of the above F-DL architectures. Results from extensive evaluations conducted on publicly available synthetic and home-grown real-world datasets reveal 95% and 96% improvement in beam selection speed over classical RF-only beam sweeping, respectively. F-DL also outperforms the state-of-the-art techniques by 20-22% in predicting top-10 best beam pairs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源