论文标题

椭圆曲线家族的根号和两个应用

Root numbers of a family of elliptic curves and two applications

论文作者

Love, Jonathan

论文摘要

对于\ Mathbb {q} \ setMinus \ { - 1,0,1 \} $的每个$ t \,在$ \ mathbb {q} $上定义了椭圆曲线\ begin \ begin {align*} e_t:y^2 = x(x+1)(x+t^2)。 \ end {align*}使用root号$ w(e_t)$的公式作为$ t $的函数,并假设对椭圆曲线等级的一些标准猜想,我们确定(一组密度为零),一组椭圆形曲线的同态类别类别的椭圆形类别$ e/\ e/\ mathbb {q} $ nterm oft in n Times $ ntime oft in ofters n oft n Tims oft in n Times $ nterm oft in n Times $ nterbb contbb contbb in oft y MATHBB( \ Mathbb {Z}/2 \ Mathbb {Z} \ Times \ Mathbb {Z}/4 \ Mathbb {Z} $,以及可以写入两个正理右三角形斜率的乘积的有理数。

For each $t\in\mathbb{Q}\setminus\{-1,0,1\}$, define an elliptic curve over $\mathbb{Q}$ by \begin{align*} E_t:y^2=x(x+1)(x+t^2). \end{align*} Using a formula for the root number $W(E_t)$ as a function of $t$ and assuming some standard conjectures about ranks of elliptic curves, we determine (up to a set of density zero) the set of isomorphism classes of elliptic curves $E/\mathbb{Q}$ whose Mordell-Weil group contains $\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/4\mathbb{Z}$, and the set of rational numbers that can be written as a product of the slopes of two rational right triangles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源