论文标题

HyperCube中的广义Turán密度

Generalized Turán densities in the hypercube

论文作者

Axenovich, Maria, Benz, Laurin, Offner, David, Tompkins, Casey

论文摘要

经典的极端或Turán类型问题要求确定$ {\ rm ex}(g,h)$,这是图$ g $的子图中最大数量的边缘,该边缘不包含$ h $的子量度同构。 Alon和Shikhelman引入了所谓的广义极值$ {\ rm ex}(g,t,h)$,定义为最大$ g $中的$ t $的亚毛学同构的最大数量,其中包含$ g $,其中不包含子级别的子级别等差异至$ h $。在本文中,我们调查了$ g = q_n $,尺寸$ n $,$ t $和$ h $的案例,是较小的超级立管或周期。

A classical extremal, or Turán-type problem asks to determine ${\rm ex}(G, H)$, the largest number of edges in a subgraph of a graph $G$ which does not contain a subgraph isomorphic to $H$. Alon and Shikhelman introduced the so-called generalized extremal number ${\rm ex}(G,T,H)$, defined to be the maximum number of subgraphs isomorphic to $T$ in a subgraph of $G$ that contains no subgraphs isomorphic to $H$. In this paper we investigate the case when $G = Q_n$, the hypercube of dimension $n$, and $T$ and $H$ are smaller hypercubes or cycles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源