论文标题

伪稳定的Hodge积分

Pseudostable Hodge integrals

论文作者

Cavalieri, Renzo, Gallegos, Joel, Ross, Dustin, Van Over, Brandon, Wise, Jonathan

论文摘要

本文启动了对假曲线模量空间上的Hodge积分的研究。我们证明了一个明确的比较公式,它允许人们在稳定曲线的模量空间上有效地计算任何可固定的hodge积分数,并且我们使用此比较来证明伪稳定的Hodge积分与在Lambda类中相同,但在Lambda类中是稳定的,而不是在Lambda类别中,但在lambda classe上是不合同的。这表明伪稳定的Gromov-witten不变性等于目标曲线的常规gromov-witten不变性,但不适合高维目标品种。

This paper initiates a study of Hodge integrals on moduli spaces of pseudostable curves. We prove an explicit comparison formula that allows one to effectively compute any pseudostable Hodge integral in terms of intersection numbers on moduli spaces of stable curves, and we use this comparison to prove that pseudostable Hodge integrals are equal to their stable counterparts when they are linear in lambda classes, but not when they are nonlinear. This suggests that pseudostable Gromov-Witten invariants are equal to usual Gromov-Witten invariants for target curves, but not for higher-dimensional target varieties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源