论文标题

联合气网:用于联合学习的混合数字动物神经网络传输

Federated AirNet: Hybrid Digital-Analog Neural Network Transmission for Federated Learning

论文作者

Fujihashi, Takuya, Koike-Akino, Toshiaki, Watanabe, Takashi

论文摘要

通过无线通道联合学习的关键问题是如何通过随时间变化的频道交换大量模型参数。通常使用基于数字和模拟方案的两种类型的解决方案。基于数字的解决方案对压缩进行了量化和熵编码,而通过无线通道的传输可能会导致由于熵编码中的全有或全无的行为而导致灾难性错误。基于模拟的解决方案(例如气网和AirComp)将模拟调制用于参数传输。但是,这种模拟方案通常由于源信号的较大功率而没有压缩增益而引起严重的失真。本文提出了一种新型的混合数字分析传输源性气网 - 对于联合学习中的模型参数传输。联邦气网集成了低速率数字编码和能量混合模拟调制。数字编码提供了模型参数的基线并压实源信号功率。另外,从原始和编码的模型参数获得的残差参数是根据瞬时无线通道质量来增强基线的模拟调制。我们表明,与基于数字和模拟的解决方案相比,在广泛的无线通道信号噪声比(SNRS)中,提议的联合气网与基于数字和模拟的解决方案相比,产生更好的图像分类精度。

A key issue in federated learning over wireless channels is how to exchange a large number of the model parameters via time-varying channels. Two types of solutions based on digital and analog schemes are used typically. The digital-based solution takes quantization and entropy coding for compression, whereas transmissions via wireless channels may cause catastrophic errors owing to the all-or-nothing behavior in entropy coding. The analog-based solutions such as AirNet and AirComp use analog modulation for the parameter transmissions. However, such an analog scheme often causes significant distortion due to the source signal's large power without compression gain. This paper proposes a novel hybrid digital-analog transmission-Federated AirNet--for the model parameter transmissions in federated learning. The Federated AirNet integrates low-rate digital coding and energy-compact analog modulation. The digital coding offers the baseline of the model parameters and compacts the source signal power. In addition, the residual parameters, which are obtained from the original and encoded model parameters, are analog-modulated to enhance the baseline according to the instantaneous wireless channel quality. We show that the proposed Federated AirNet yields better image classification accuracy compared with the digital-based and analog-based solutions over a wide range of wireless channel signal-to-noise ratios (SNRs).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源