论文标题

快速生成全光$^{39} $ k Bose-Einstein使用低场feshbach共振

Rapid generation of all-optical $^{39}$K Bose-Einstein condensates using a low-field Feshbach resonance

论文作者

Herbst, Alexander, Albers, Henning, Stolzenberg, Knut, Bode, Sebastian, Schlippert, Dennis

论文摘要

Ultracold Potassium是量子技术应用和基础研究的有趣候选者,因为它允许通过低场磁性feshbach共振来控制原子内相互作用。然而,由于必须使用磁场作为游离参数,因此实现了玻色丝菌冷凝水的高通量来源仍然具有挑战性。我们调查了全光$^{39} $ k bose-instein的生产,使用Feshbach共鸣近33美元的散射长度不同。通过将散射长度调整为75美元,A_0 $和$ 300 \ $ 300 \,A_0 $的零售价,我们证明了$ 5 $ $ $ $ 5的价格,我们的票价和最终票数的交易额为$ 300 \ $ 33 $ g。加倍蒸发通量。为此,我们能够以$ 5.8 \ times10^4 $原子在$ 850 $ MS蒸发时间内以$ 232 \ $ 232 \,a_0 $和$ 1.6 \ times10^5 $原子的散射长度在$ 158 \ $ 158 \ $ 158 \,a_0 $中的散射长度,分别以$ 232 \ $ 232 \ $ 232 \ $ 232 \,$ 232 \ $ 1.6 \ times10^5 $。我们部署了一个数值模型来分析相对于散射长度的通量和原子数缩放,确定当前局限性并模拟我们设置的最佳性能。根据我们的发现,我们描述了通向惯性感应的超冷钾高通量来源的路线。

Ultracold potassium is an interesting candidate for quantum technology applications and fundamental research as it allows controlling intra-atomic interactions via low-field magnetic Feshbach resonances. However, the realization of high-flux sources of Bose-Einstein condensates remains challenging due to the necessity of optical trapping to use magnetic fields as free parameter. We investigate the production of all-optical $^{39}$K Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near $33$ G. By tuning the scattering length in a range between $75\, a_0$ and $300\, a_0$ we demonstrate a trade off between evaporation speed and final atom number and decrease our evaporation time by a factor of $5$ while approximately doubling the evaporation flux. To this end, we are able to produce fully condensed ensembles with $5.8\times10^4$ atoms within $850$ ms evaporation time at a scattering length of $232\, a_0$ and $1.6\times10^5$ atoms within $3.9$ s at $158\, a_0$, respectively. We deploy a numerical model to analyse the flux and atom number scaling with respect to scattering length, identify current limitations and simulate the optimal performance of our setup. Based on our findings we describe routes towards high-flux sources of ultra-cold potassium for inertial sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源