论文标题
Sensaturban:从城市规模的摄影测量点云中学习语义
SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds
论文作者
论文摘要
随着商业深度传感器和3D扫描仪的最新可用性和负担能力,已经公开了越来越多的3D(即RGBD,点云)数据集的数量,以促进3D计算机视觉的研究。但是,现有数据集涵盖相对较小的区域或语义注释有限。对城市规模的3D场景的细粒度了解仍处于起步阶段。在本文中,我们介绍了一个城市规模的无人机摄影点云数据集,该数据集由三个英国城市收集的近30亿点组成,覆盖7.6 km^2。数据集中的每个点都标有细粒语义注释,导致数据集的大小是以前现有最大的摄影测量点云数据集的三倍。除了遇到更常见的类别,例如公路和植被外,包括铁路,桥梁和河流在内的城市水平类别还包括在我们的数据集中。基于此数据集,我们进一步构建了一个基准,以评估最先进的细分算法的性能。特别是,我们提供了全面的分析,并确定了限制城市规模云理解的几个关键挑战。该数据集可从http://point-cloud-analysis.cs.ox.ac.uk获得。
With the recent availability and affordability of commercial depth sensors and 3D scanners, an increasing number of 3D (i.e., RGBD, point cloud) datasets have been publicized to facilitate research in 3D computer vision. However, existing datasets either cover relatively small areas or have limited semantic annotations. Fine-grained understanding of urban-scale 3D scenes is still in its infancy. In this paper, we introduce SensatUrban, an urban-scale UAV photogrammetry point cloud dataset consisting of nearly three billion points collected from three UK cities, covering 7.6 km^2. Each point in the dataset has been labelled with fine-grained semantic annotations, resulting in a dataset that is three times the size of the previous existing largest photogrammetric point cloud dataset. In addition to the more commonly encountered categories such as road and vegetation, urban-level categories including rail, bridge, and river are also included in our dataset. Based on this dataset, we further build a benchmark to evaluate the performance of state-of-the-art segmentation algorithms. In particular, we provide a comprehensive analysis and identify several key challenges limiting urban-scale point cloud understanding. The dataset is available at http://point-cloud-analysis.cs.ox.ac.uk.