论文标题
通过深度学习对光声显微镜图像进行删除
De-Noising of Photoacoustic Microscopy Images by Deep Learning
论文作者
论文摘要
作为一种混合成像技术,光声显微镜(PAM)成像由于激光强度的最大允许暴露,组织中超声衰减以及传感器的固有噪声而受到噪声。去噪声是减少噪声的后处理方法,可以恢复PAM图像质量。然而,以前的去噪声技术通常在很大程度上依赖数学先验以及手动选择的参数,从而导致不同嘈杂图像的不令人满意和缓慢的去命中性能,从而极大地阻碍了实用和临床应用。在这项工作中,我们提出了一种基于学习的深度方法,可以从没有数学先验的情况下从PAM图像中删除复杂的噪声,并为不同输入图像的设置进行手动选择。注意增强的生成对抗网络用于提取图像特征并消除各种噪音。在合成数据集和实际数据集(包括幻影(叶静脉)和体内(小鼠耳血管和斑马鱼色素)实验中,都证明了所提出的方法。结果表明,与以前的PAM去噪声方法相比,我们的方法在定性和定量恢复图像方面表现出良好的性能。此外,对于$ 256 \ times256 $像素的图像,还达到了0.016 s的降价速度。我们的方法对于降低了PAM图像是有效且实用的。
As a hybrid imaging technology, photoacoustic microscopy (PAM) imaging suffers from noise due to the maximum permissible exposure of laser intensity, attenuation of ultrasound in the tissue, and the inherent noise of the transducer. De-noising is a post-processing method to reduce noise, and PAM image quality can be recovered. However, previous de-noising techniques usually heavily rely on mathematical priors as well as manually selected parameters, resulting in unsatisfactory and slow de-noising performance for different noisy images, which greatly hinders practical and clinical applications. In this work, we propose a deep learning-based method to remove complex noise from PAM images without mathematical priors and manual selection of settings for different input images. An attention enhanced generative adversarial network is used to extract image features and remove various noises. The proposed method is demonstrated on both synthetic and real datasets, including phantom (leaf veins) and in vivo (mouse ear blood vessels and zebrafish pigment) experiments. The results show that compared with previous PAM de-noising methods, our method exhibits good performance in recovering images qualitatively and quantitatively. In addition, the de-noising speed of 0.016 s is achieved for an image with $256\times256$ pixels. Our approach is effective and practical for the de-noising of PAM images.