论文标题

范德华方程的数学分析

Mathematical Analysis of the van der Waals Equation

论文作者

Prodanov, Emil M.

论文摘要

The parametric cubic van der Waals polynomial $p V^3 - (R T + b p) V^2 + a V - a b$ is analysed mathematically and some new generic features (theoretically, for any substance) are revealed - if the pressure is not allowed to take negative values [temperatures not lower than $1/(4Rb)$], the localization intervals of the three volumes on the isobar-isotherm are: $ 3B/2 <v_a \ le 3b $,$ \,\,2b <v_b <(3 + \ sqrt {5})b $,$ 3B \ le v_c <rt/p + b = v_0 + b $($ v_0 $是Clapeyron是Clapeyron的理想气量)。对于较低的温度值,root $ v_a $从下面限制为$ b $,而$ v_b $具有本地化间隔$ b <v_b <2a/(r \,τ)$,其中$τ> 0 $是模型的新最低温度。 Van der Waals模型的不稳定状态也已被普遍进行本地化:它们位于$ v_b $的本地化间隔内。还介绍了有关在麦克斯韦假设的前提下查找卷$ v_ {a,b,c} $的讨论。

The parametric cubic van der Waals polynomial $p V^3 - (R T + b p) V^2 + a V - a b$ is analysed mathematically and some new generic features (theoretically, for any substance) are revealed - if the pressure is not allowed to take negative values [temperatures not lower than $1/(4Rb)$], the localization intervals of the three volumes on the isobar-isotherm are: $3b/2 < V_A \le 3b$, $\,\, 2b < V_B < (3 + \sqrt{5})b$, and $3b \le V_C < RT/p + b = V_0 + b$ (with $V_0$ being Clapeyron's ideal gas volume). For lower values of the temperature, the root $V_A$ is bounded from below by $b$, while $V_B$ has the localization interval $b < V_B < 2a/(R \, τ)$, where $τ> 0$ is the new minimum temperature of the model. The unstable states of the van der Waals model have also been generically localized: they lie in an interval within the localization interval of $V_B$. A discussion on finding the volumes $V_{A, B, C}$, on the premise of Maxwell's hypothesis, is also presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源