论文标题

Navier Stokes方程的双重自适应惩罚方法

A Doubly Adaptive Penalty Method for the Navier Stokes Equations

论文作者

Kean, Kiera, Xie, Xihui, Xu, Shuxian

论文摘要

我们开发,分析和测试自适应惩罚参数方法。当适应惩罚参数,$ε,$和速度时间导数的稳定性时,我们证明了速度无条件的稳定性,在惩罚参数更改的条件下,$ε(t_ {n+1}) - ε(t_n)$。分析和测试表明,适应$ε(t_ {n+1})$,以响应$ \ nabla \ cdot u(t_n)$消除了选择$ε$的问题,并在速度上产生了良好的近似值。我们提供错误分析和数值测试以支持这些结果。我们还可以通过调整时间步长来补充自适应-yε$方法。罚款参数$ε$和时间步长独立调整。我们进一步比较了第一,第二和可变的订单时间步长算法。准确的压力恢复仍然是一个空旷的问题。

We develop, analyze and test adaptive penalty parameter methods. We prove unconditional stability for velocity when adapting the penalty parameter, $ε,$ and stability of the velocity time derivative under a condition on the change of the penalty parameter, $ε(t_{n+1})-ε(t_n)$. The analysis and tests show that adapting $ε(t_{n+1})$ in response to $\nabla\cdot u(t_n)$ removes the problem of picking $ε$ and yields good approximations for the velocity. We provide error analysis and numerical tests to support these results. We supplement the adaptive-$ε$ method by also adapting the time-step. The penalty parameter $ε$ and time-step are adapted independently. We further compare first, second and variable order time-step algorithms. Accurate recovery of pressure remains an open problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源