论文标题

具有时空变化的高斯随机外部磁场的影响,对Ising Spin-1/2三层方形铁磁铁的补偿

Effect of a Gaussian random external magnetic field with spatio temporal variation on compensation in Ising spin-1/2 trilayered square ferrimagnets

论文作者

Chandra, Soham

论文摘要

在这项工作中,进行了广泛的大都市蒙特卡洛模拟,以研究由带有一定时空变化的外部高斯随机磁场驱动的三层旋转1/2 ising iSing ferrimagnet的稳态磁性和热力学行为。这种薄的铁磁系统表现出补偿现象,因此是几种技术应用的潜在有趣的候选者。在这里,两个不同的理论原子A和B构成了类似原子(A-A和B-B)铁磁相互作用的ABA和AAB类型,与原子(A-B)相互作用(A-B)相互作用。根据时空变化的高斯随机场的强度,补偿和临界点会移动和稳态磁性行为在不同类型的铁磁性行为之间发生变化。在越过磁场的标准偏差的有限阈值之后,补偿现象甚至在其他控制参数的特定选择中都消失了。因此,在两种构型的哈密顿参数空间中,铁磁相的岛屿没有补偿,并在相位区域内出现并获得无野外病例的补偿。这些岛屿的区域随着外部场的标准偏差,$σ$的越来越多,遵守缩放关系:$ f(σ,a(σ))=σ^{ - b} a(σ)这些指数的值在统计间隔内与均匀的随机磁场获得的值匹配。

In this work, an extensive Metropolis Monte Carlo simulation is performed to investigate the steady-state magnetic and thermodynamic behaviour of a trilayered spin-1/2 Ising ferrimagnet with square monolayers, driven by external Gaussian random magnetic field with certain spatio-temporal variations. Such thin ferrimagnetic systems exhibit compensation phenomenon and thus are potentially interesting candidates for several technological applications. Here, two distinct theoretical atoms, A and B, make up the ABA and AAB types of configurations in which the like atoms (A-A and B-B) ferromagnetically interact and the unlike atoms (A-B) interact antiferromagnetically. Depending upon the strength of the spatio-temporally varying Gaussian random field, the compensation and critical points shift and steady-state magnetic behaviours change between the different distinct types of ferrimagnetic behaviours. The compensation phenomenon even vanishes after crossing a finite threshold of the standard deviation of the magnetic field for particular choices of the other controlling parameters. Consequently, in the Hamiltonian parameter space of both configurations, islands of ferrimagnetic phase without compensation appear within the phase area with compensation of field-free case. The areas of such islands grow with an increasing standard deviation of the external field, $σ$, obeying the scaling relation: $f(σ, A(σ))=σ^{-b}A(σ)$ with $b_{ABA}=1.913\pm 0.137$ and $b_{AAB}=1.625\pm 0.066$ . These values of exponents match within the statistical interval with those obtained with the uniform random magnetic field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源