论文标题
通过聚类进行多种假设扫描匹配
Multi-Hypothesis Scan Matching through Clustering
论文作者
论文摘要
Graph-Slam是一种良好的算法,用于构建环境的拓扑图,同时尝试机器人的定位。它依靠扫描匹配算法来对齐机器人动作的嘈杂观测值,以计算当前机器人位置的估计。我们提出了一种根本不同的方法来扫描匹配任务,以改善轮式转移位移的估计,从而提高全面猛击算法的性能。一种蒙特 - 卡洛方法用于生成两次扫描之间几何位移的加权假设,然后我们将这些假设聚集以计算导致最佳比对的位移。为了应对旋转译本的聚类化,我们提出了一种新型的聚类方法,该方法通过将核密度分配到旋转译本上,将高斯的平均移位稳健地扩展到方向。我们在使用合成数据和英特尔研究实验室的基准测试数据集中进行了一组广泛的实验中,证明了我们的方法的有效性。结果证实,在匹配的精度和运行时计算方面,我们的方法比基于迭代的扫描匹配算法具有出色的性能。
Graph-SLAM is a well-established algorithm for constructing a topological map of the environment while simultaneously attempting the localisation of the robot. It relies on scan matching algorithms to align noisy observations along robot's movements to compute an estimate of the current robot's location. We propose a fundamentally different approach to scan matching tasks to improve the estimation of roto-translation displacements and therefore the performance of the full SLAM algorithm. A Monte-Carlo approach is used to generate weighted hypotheses of the geometrical displacement between two scans, and then we cluster these hypotheses to compute the displacement that results in the best alignment. To cope with clusterization on roto-translations, we propose a novel clustering approach that robustly extends Gaussian Mean-Shift to orientations by factorizing the kernel density over the roto-translation components. We demonstrate the effectiveness of our method in an extensive set of experiments using both synthetic data and the Intel Research Lab's benchmarking datasets. The results confirms that our approach has superior performance in terms of matching accuracy and runtime computation than the state-of-the-art iterative point-based scan matching algorithms.