论文标题
磁性随机通道记忆的自旋电流的发电的视角
A Perspective on Electrical Generation of Spin Current for Magnetic Random Access Memories
论文作者
论文摘要
自旋电流用于通过切换磁性隧道连接(MTJ)纳米氏磁性电极之一的磁化方向来在磁随机访问记忆(MRAM)设备中写入信息。电荷电流转化为自旋电流的不同物理机制可用于2末端和3末端装置的几何形状。在2端设备中,通过在MTJ的铁磁电极中自旋滤波来进行电荷到旋转转换,而当今的MRAM设备在理论上预期的最大电荷至旋转转换效率附近运行。在3端设备中,通道材料中的自旋轨道相互作用也可以用于产生大型自旋电流。在这篇观点文章中,我们讨论了可以满足MRAM技术要求的旋转转换过程。我们强调需要开发具有较大的电荷到自旋转换效率的通道材料(可以等于或超过自旋滤波产生的通道材料),以及具有垂直于通道界面的自旋极化分量的自旋电流。这将使基于垂直磁化的MTJ纳米柱的直径低于20 nm的高性能设备,而无需对称破坏场。我们还讨论了CMO集成至关重要的MRAM特征。最后,我们确定了对旋转转换测量值和指标的关键研究需求,这些测量和指标可用于在完整的MTJ纳米氏设备制造和表征之前优化设备通道材料和界面属性。
Spin currents are used to write information in magnetic random access memory (MRAM) devices by switching the magnetization direction of one of the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) nanopillar. Different physical mechanisms of conversion of charge current to spin current can be used in 2-terminal and 3-terminal device geometries. In 2-terminal devices, charge-to-spin conversion occurs by spin filtering in the MTJ's ferromagnetic electrodes and present day MRAM devices operate near the theoretically expected maximum charge-to-spin conversion efficiency. In 3-terminal devices, spin-orbit interactions in a channel material can also be used to generate large spin currents. In this perspective article, we discuss charge-to-spin conversion processes that can satisfy the requirements of MRAM technology. We emphasize the need to develop channel materials with larger charge-to-spin conversion efficiency -- that can equal or exceed that produced by spin filtering -- and spin currents with a spin polarization component perpendicular to the channel interface. This would enable high-performance devices based on sub-20 nm diameter perpendicularly magnetized MTJ nanopillars without need of a symmetry breaking field. We also discuss MRAM characteristics essential for CMOS integration. Finally, we identify critical research needs for charge-to-spin conversion measurements and metrics that can be used to optimize device channel materials and interface properties prior to full MTJ nanopillar device fabrication and characterization.