论文标题

标量矢量调节理论中的通胀

Inflation in a scalar-vector-tensor theory

论文作者

Oliveros, A., Rodríguez, Cristhian J.

论文摘要

在这项工作中,我们研究了特定的标量矢量调整的引力理论,而无需$ u(1)$量规对称。该模型是根据Heisenberg等人引入的更通用的动作构建的。 (Phys Rev D 98:024038,2018)使用Lagrangians和耦合功能的某些特定选择。此外,对于此模型,我们为动作构建了明确的形式,从中,我们得出了一般方程:能量弹药张量和运动方程,并使用Flat Flrw背景,我们已经分析了是否可以通过它获得通货膨胀式。此外,使用特定选择的电势,耦合函数,合适的无量纲耦合常数和初始条件,可以从数值上验证这种通货膨胀模型是可行的。从这个意义上讲,我们可以验证我们的通货膨胀模型中引入耦合函数$ f(ϕ)$,使我们能够达到适当数量的$ e $ foldings $ n $,以实现足够的通货膨胀。这是一个了不起的结果,因为没有耦合功能贡献,正如Heisenberg等人所证明的那样,通货膨胀结束时的$ e $折叠量较小。 (2018)。同样,通货膨胀期间模型必须满足的无轴基和稳定条件,即获得线性宇宙学扰动的幽灵和拉普拉斯不稳定性,此外,这些条件也得到了数值验证。

In this work, we study inflation in a particular scalar-vector-tensor theory of gravitation without the $U(1)$ gauge symmetry. The model is constructed from the more general action introduced in Heisenberg et al. (Phys Rev D 98:024038, 2018) using certain specific choices for the Lagrangians and the coupling functions. Also, for this model we build the explicit form for the action, and from it, we derive the general equations: the energy-momentum tensor and the equations of motion, and using the flat FLRW background, we have analyzed if it's possible to obtain an inflationary regime with it. Additionally, using particular choices for the potential, the coupling functions, suitable dimensionless coupling constants and initial conditions, it was possible verify numerically that this model of inflation is viable. In this sense, we could verify that the introduction of the coupling function $f(ϕ)$ in our model of inflation, allows us to reach a suitable amount of $e$-foldings $N$ for sufficient inflation. This is a remarkable result, since without the coupling function contribution, the amount of $e$-foldings is smaller at the end of inflation, as has been demonstrated in Heisenberg et al. (2018). Also, the no-ghosts and stability conditions that the model during inflation must satisfy, i.e., absence of ghosts and Laplacian instabilities of linear cosmological perturbations were obtained, furthermore these conditions were verified numerically too.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源