论文标题
Spectranet:从高对比度光谱图像中学到了对人造卫星的识别
SpectraNet: Learned Recognition of Artificial Satellites From High Contrast Spectroscopic Imagery
论文作者
论文摘要
有效的空间交通管理需要对人工卫星的积极识别。从观察到的数据中提取对象识别的当前方法需要空间分辨的图像,该图像将识别限制在低地球轨道中的对象。但是,大多数人造卫星在距离的地静止轨道上运行,这禁止基于地面的天文台解决空间信息。本文展示了一种对象识别解决方案利用修改后的残留卷积神经网络,以将距离不变的光谱数据映射到对象身份。我们报告了模拟的64级卫星问题的分类精度超过80%,即使在卫星进行恒定的随机重新定位的情况下。由这些结果驱动的一个天文观察活动返回了九类问题的精度为72%,平均每个班级的100个示例,按照模拟的预期进行。我们证明了通过辍学,随机重量平均(SWA)和以SWA为中心的深层结合来衡量分类不确定性的差异贝叶斯推断的应用,这是空间交通管理中的临界组成部分,常规决策可能会冒险昂贵的空间资产,并带来地缘政治后果。
Effective space traffic management requires positive identification of artificial satellites. Current methods for extracting object identification from observed data require spatially resolved imagery which limits identification to objects in low earth orbits. Most artificial satellites, however, operate in geostationary orbits at distances which prohibit ground based observatories from resolving spatial information. This paper demonstrates an object identification solution leveraging modified residual convolutional neural networks to map distance-invariant spectroscopic data to object identity. We report classification accuracies exceeding 80% for a simulated 64-class satellite problem--even in the case of satellites undergoing constant, random re-orientation. An astronomical observing campaign driven by these results returned accuracies of 72% for a nine-class problem with an average of 100 examples per class, performing as expected from simulation. We demonstrate the application of variational Bayesian inference by dropout, stochastic weight averaging (SWA), and SWA-focused deep ensembling to measure classification uncertainties--critical components in space traffic management where routine decisions risk expensive space assets and carry geopolitical consequences.