论文标题

评估贝叶斯模型可视化

Evaluating Bayesian Model Visualisations

论文作者

Stein, Sebastian, Williamson, John H.

论文摘要

概率模型为人们最终做出的业务和政策决策越来越广泛。最近的算法,计算和软件框架开发进步有助于贝叶斯概率模型的扩散,这些模型通过其关节分布而不是点估计来表征未观察到的参数。尽管他们可以使决策者能够探索复杂的查询并在理论上执行任何风格的条件,但需要合适的可视化和交互式工具,以最大程度地提高用户在不确定性下的理解和理性决策。在本文中,提出了一项协议,用于定量评估贝叶斯模型可视化,并引入一个软件框架,该协议实施此协议,以支持评估实践中的标准化并促进可重复性。我们说明了一项用户研究的评估和分析工作流程,该研究探讨了制作拳击手机和假设结果图互动是否可以提高理解或理性,并以设计指南为希望在未来进行类似研究的研究人员结束。

Probabilistic models inform an increasingly broad range of business and policy decisions ultimately made by people. Recent algorithmic, computational, and software framework development progress facilitate the proliferation of Bayesian probabilistic models, which characterise unobserved parameters by their joint distribution instead of point estimates. While they can empower decision makers to explore complex queries and to perform what-if-style conditioning in theory, suitable visualisations and interactive tools are needed to maximise users' comprehension and rational decision making under uncertainty. In this paper, propose a protocol for quantitative evaluation of Bayesian model visualisations and introduce a software framework implementing this protocol to support standardisation in evaluation practice and facilitate reproducibility. We illustrate the evaluation and analysis workflow on a user study that explores whether making Boxplots and Hypothetical Outcome Plots interactive can increase comprehension or rationality and conclude with design guidelines for researchers looking to conduct similar studies in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源