论文标题
欧几里得时代的纠缠熵的时间方法和模糊空间
Euclidean Time Approach to Entanglement Entropy on Lattices and Fuzzy Spaces
论文作者
论文摘要
在最近的一封信中,我们开发了一种新颖的欧几里得时间方法,以根据格林的功能计算晶格和模糊空间上的Rényi纠缠熵。目前的工作部分是针对绿色矩阵函数公式的明确证明,该证明是在上一封信中引用并使用的,而另一部分则用于这种形式主义的某些应用。我们关注标量理论上的1+1晶格。我们还使用开发的方法通过考虑相互作用的模型来系统地超出高斯案例,特别是我们的结果证实了关于一级纠正纠正的早期期望。我们最终概述了如何使用这种方法来计算模糊空间上的纠缠熵,以免费和相互作用的标量理论。
In a recent letter, we developed a novel Euclidean time approach to compute Rényi entanglement entropy on lattices and fuzzy spaces based on Green's function. The present work is devoted in part to the explicit proof of the Green's matrix function formula which was quoted and used in the previous letter, and on the other part to some applications of this formalism. We focus on scalar theory on 1+1 lattice. We also use the developed approach to go systematically beyond the Gaussian case by considering interacting models, in particular our results confirm earlier expectations concerning the correction to the entanglement at first order. We finally outline how this approach can be used to compute the entanglement entropy on fuzzy spaces for free and interacting scalar theories.